
U Can’t Touch This: Block-Level Protection for Portable Storage

Kevin R.B. Butler Petros Efstathopoulos

Systems and Internet Infrastructure Security Lab Symantec Research Labs
Pennsylvania State University, University Park, PA, USA Symantec Corporation, Culver City, CA, USA

butler@cse.psu.edu petros efstathopoulos@symantec.com

ABSTRACT
Advancements in portable storage have made it increasingly
likely for users to carry large amounts of data with them,
attaching their devices to multiple computers and transfer-
ring data between systems. This model poses new challenges
for preserving data isolation policies, particularly whentra-
ditional information flow preserving operating systems no
longer have control over the portable storage medium.

Using secure disks and principles of label persistence from
the Asbestos operating system, we propose mechanisms to
address these concerns, by making the drive responsible for
enforcing data isolation at the block level, and preventing
block sharing between hosts that are not considered equally
trusted. We describe models of partial protection and full
disk labeling, and corresponding operations and precondi-
tions necessary for the OS-disk interaction to occur. This
model poses many new system design challenges and can
lead to interesting new security mechanisms.

1 INTRODUCTION
Portable storage media, such as external hard drives and USB
“flash drives”, have become very popular due to their con-
venient size and weight, good performance, and decreasing
cost per GB. However, the popularity of portable storage has
raised many security and privacy issues, as evidenced by re-
cent incidents [6, 15] where sensitive data (e.g., classified
military or trade secrets) were stored on misplaced or stolen
portable media. Current mechanisms for protecting informa-
tion leakage, due to storage falling into the wrong hands, in-
clude full-disk encryption (FDE) for on-disk data protection
and authentication mechanisms such as biometrics or a pass-
word supplied can be used for access control.

These protections, however, are based on two supposi-
tions: the host being attached to can be trusted not to compro-
mise or leak data from the disk, and a binary “all-or-nothing”
approach to releasing access to disk information is adequate.
Consider another case, where portable drives are used in a
secure environment enforcing an information flow control
(IFC) policy such as multilevel security (MLS). While a se-
cure workstation may protect data by ensuring security prim-
itives (e.g.,labels[3]) are used to implement the desired pol-
icy, we are in a conundrum when it comes to guaranteeing

the security of that portable data. As portable devices con-
tinue to increase their storage capacities, the probabilities of
users having just one device with them for all of their storage
needs increase commensurately. This will lead to situations
where users will want to access their data on host platforms
that may not be as well-protected as their secure worksta-
tions. For example, a user might connect her portable storage
device to a lower-integrity host such as her laptop, or even
share it with a user whose system is of unknown integrity.

These latter cases demonstrate how rigid binary access
breaks down. Either the files are completely accessible and
open to potentially malicious hosts, or all files—including
“unclassified”, low-secrecy files—become unavailable, ham-
pering usability of the portable drive. If, for example, the
user’s laptop was trusted to handle certain types of low-
secrecy data, it should be able to have access to them. We
wish to protect, however, against systems that could be using
a flawed or compromised storage stack, which misinterprets
or intentionally disregards file system policy primitives.

This paper argues that the best way to protect the se-
crecy and integrity of data stored on portable media is to
re-examine the relationship between the host and storage,
and shift from a model of the host being wholly responsi-
ble for security policy enforcement to one where the disk
can perform policy checks at the block level. To achieve this
goal, we first leverage some of the unique characteristics of
Asbestos labels[5], presented in Section 2. The decentral-
ized nature of Asbestos labels, and the ability to serialize
and store them on disk, makes the file system label-aware
and allows for self-contained policies to be stored on sta-
ble storage. Combining these serialized, self-contained pol-
icy descriptions withautonomously secure disks, presented
in Section 3, we can improve the security of data access on
portable disks. In particular, we describe how we can use se-
cure bootstrapping to identify the host, determine its level
of integrity and trust, and recover the privileges associated
with it—stored on disk during the initial “pairing” process.
In Section 4, we describe an architecture for enforcing data
isolation at the disk block level. We consider mechanisms
for protecting policy-critical files, as well as mechanismsfor
full disk block labeling that would allow us to enforce data
protections regardless of the host integrity level. Our primary
contribution is thusa demonstration of how secure disks can
work in concert with operating system primitives to support
policy mechanisms and improve the security of portable stor-



age.We discuss challenges related to our design, and in Sec-
tion 5 consider related work, before concluding in Section 6.

2 ASBESTOS LABEL PERSISTENCE

The Asbestos operating system [5] aims to improve security
by containing the effects of application bugs. An Asbestos
label is a function mappingtagsandlevels: every tag in the
system (represented by a unique, opaque identifier), is asso-
ciated with one of five possible Asbestos label level values—
each corresponding to a different privilege, integrity andse-
crecy level.

Asbestos uses a “split label” design for processes: the
tracking labelkeeps track of all contamination and privi-
lege acquired by the process, while theclearance labeltracks
the level of contamination that the process is cleared to re-
ceive with respect to each tag.1 Using this split label model,
Asbestos labels can implementdecentralized information
flow control (DIFC). By modulating these labels directly,
or through a high-level policy description language [4], one
can implement a wide variety of application-defined, kernel-
enforced security policies.

Asbestos labels can be stored persistently on the file sys-
tem. Similar to processes, files carry two labels: afile track-
ing labeland afile clearance label, representing the contam-
ination level acquired when reading the file and the privilege
necessary to modify it, respectively. All file system labelsare
immutable and are set at file creation time.2

The pickle primitive [22] allows applications to serialize
and store privilege on the file system. Any runtime Asbestos
tag can be “pickled” and stored on a specialpickle file, along
with a privilege level and a key. A special “unpickle” op-
eration allows privilege to be recovered for that tag (e.g.,
after application restart) if various constraints are satisfied.
All pickle files can be unpickled at the least privileged (i.e.
most restrictive) level by anyone. Unpickling at more privi-
leged levels is controlled through labels on pickle files them-
selves, as well as access control checks (i.e., keys associated
with each pickle file). With the pickle mechanism in place,
all file system labels can be described in terms of pickled
tags. Therefore, controlling access to pickle files is essential
for the security and integrity of the file system, since pickles
are the key to controlling file system labels and serialized,
persistently stored privilege.

3 SECURE DISKS AND LABELS

In order to address some of the security challenges related
to portable storage, we need a means of ensuring that certain
policy decisions can be made securely and independent of
the operating system. By making data partially or fully secur-
able below the OS layer, we attempt to address cases where

1Alternatively, one can think of the clearance label as the lowest accept-
able integrity level incoming information must be at.

2Consequently, declassifying data out of a file requires a privileged pro-
cess to copy the data to a new, “uncontaminated” file.

TPM
verifier 
logic

ATA/SCSI 
interface

Host Drive Enclosure

OS partition

root partition
policy 
store 

filesystem

management 
channel

disk

admin
interface

OS

Figure 1: Overview of the Firma architecture.

the portable disk is connected to multiple systems with dif-
ferent levels of trust.

We have proposedautonomously secure disks(ASDs) [2]
that are based on the increasing capabilities found in modern
disks, such as non-volatile memory and cryptographic pro-
cessors. These disks form a basis for our investigations and,
in conjunction with labeling, provide a means for protecting
information flow primitives on disk, and potentially provid-
ing the basis for (partial or full) disk-level information flow
control.

3.1 Assumptions and Security Goals
Using the advanced capabilities of ASDs, we seek to address
certain security concerns related to portable disks. Specifi-
cally, we are guided by the following goals and assumptions:

• We assume that the portable drive is equipped with a
tamper-proof administrative interface, that can be ac-
cessed securely so as to perform certain privileged ad-
ministrative tasks (e.g. firmware/software upgrade). It
could be reliant on physical security, such as requir-
ing the use of a hardware key to access the interface,
or policy on what machines are considered administra-
tive could be set within the ASD and upon verification
of the administrative machine’s identity, it would have
the capability to perform privileged operations. A full
discussion of the operational details of this mechanism
is beyond the scope of this study.

• We assume that data stored on the portable drive are
labeled. In particular, we assume that the file system is
using the Asbestos label persistence mechanism.

• Portable disks can be connected to many different hosts.
We want to provide data isolation between hosts, by en-
suring that information generated from one host is by
default not accessible to any other host the drive may
be connected to,unlessit was explicitly stored as “un-
protected” (or “unclassified”) data.

• We first assume that all hosts the drive is connected to
are attempting to access data through the labeled file
system. Attempting to protect against malicious hosts
who try to access the raw disk blocks poses additional
challenges and is discussed separately in Section 4.2.2.

3.2 Bootstrapping and Integrity Checks
TheFirma architecture [2] provides a disk-based secure boot
mechanism that assures the integrity state of the host system



attached to the disk. In a secure boot model, every stage of
the boot process must be validated in order for the boot pro-
cess to continue. Because with Firma our mechanism em-
anates from the storage itself, there are increased benefitsas
no information on the disk will be available to the rest of
the system unless the stages are correct. An overview of the
architecture is shown in Figure 1.

Validating the integrity state of the host system that the
disk connects to requires the ability of the host to provide
proofs of its integrity. We rely on the host system contain-
ing a Trusted Platform Module (TPM) [20], a commodity
tamper-evident chip that provides some non-volatile storage
and cryptographic functionality, found in virtually all mod-
ern computers. The TPM can be used to generate amea-
surement list(ML), to be compared against a list stored on
the disk. The stages of the boot process that are measured
are the hardware (through a core root of trust measurement),
the system BIOS, the bootloader, and the operating system
and associated drivers. Firma makes use of the Linux In-
tegrity Measurement Architecture (IMA) [16] for attesta-
tions, though other alternatives are also possible. If every
measurement stage is validated by the disk, the disk will be
in a usable state to the system.

There are numerous methods for the disk to obtain mea-
surements from a remote system. The easiest method would
be if the host supported adynamic root of trustfor mea-
surement, which does not rely on knowledge of the underly-
ing hardware configuration of the system. The OSLO boot-
loader [8] provides this functionality, which is contingent on
the host’s processor supporting special virtualization exten-
sions (e.g., SVM extensions on AMD processors). Because
the code for loading the bootloader and operating system re-
sides on the disk, the disk can independently compute the
necessary list of measurements and will then be able to com-
pare this list to the measurements received from the host in
a hardware-agnostic fashion. Another method uses a trusted
third party that divulges the list to the disk prior to its inter-
action with the system. This could be a trusted web server or
a similar infrastructure. Alternately, if the portable disk is a
boot drive, it can measure the system itself by being placed
in measurement mode. In this mode, the boot process is run
on the host system with the measurements recorded at each
stage, and the final list given to the disk, which uses these as
the basis for a subsequent secure boot. This solution is best
used when the host system has not been previously used, to
mitigate the potential for malware on the system.

Once the system is operational, we can check the sys-
tem’s integrity state through a variety of runtime integrity
mechanisms, which are unspecified by Firma. With Firma,
we did not specify a particular mechanism for runtime in-
tegrity, but many exist; for example, if the disk runs a virtual
machine monitor then a dynamic detector such as Patago-
nix [10] could be used; the use of the Linux Kernel Integrity
Monitor (LKIM) [12] is also possible. Periodic attestations
of the integrity state can be requested from the host, which

can deliver these over a secure disk channel, such as the
trusted send and receive commands proposed in the SCSI
and ATA specifications.

3.3 Secure Pairing
Using the methods for secure bootstrapping and integrity
checking described above, we can identify a host and ver-
ify its integrity state. By leveraging the non-volatile memory
and increased computing ability found in secure disks, we
can design a secure portable disk able to keep track of all
systems it has successfully paired with.

After it has been paired with a host, the disk stores a
unique identifier for it. A means of guaranteeing the unique-
ness of the host system being paired is to use theendorse-
ment key(EK) of the host’s TPM, which is a public-private
RSA key pair installed in the TPM at the time of manu-
facture. TheEK does not change during the lifetime of the
TPM. Normally theEK is not revealed to the outside world
because knowledge of it can compromise the privacy of the
TPM, since it is often used in the context of remote attes-
tation (i.e., identify that a TPM is in use, but not which
one specifically). However, in this scenario, it is exactly this
property of globally unique identification that allows us to
ensure that we are pairing the correct policy with the correct
machine. Because we store the public key associated with
theEK, there are no issues of compromising the secrets on
the TPM.

The publicEK and a corresponding measurement list can
be stored in the ASD’s non-volatile storage, and this list—
comprised of all machines the disk has paired with in the
past—is consulted every time the disk is connected to a host.
If the host is not recognized, it is considered new, and, after
security measurements have been performed, itsEK andML
are inserted to the list of known hosts.

4 PROTECTION MECHANISMS

4.1 Pickle File Protection
Information stored on disk by a system using Asbestos labels
may or may not carry file labels protecting access to it. In our
model, all unlabeled information on the disk is considered
“unclassified” and is accessible to any system the portable
medium is connected to.

As described in Section 2, access to all labeled data de-
pends on the ability to unpickle the necessary privilege, or,
in other words, on the ability to access the relevant pickle
files. Therefore, by controlling access to pickle files, one
could control the amount of privilege that could be recovered
from disk and, consequently, the disk data that may become
available. Our proposed mechanism uses the ASD to control
access to pickle files, based on the identity of the host the
portable disk is connected to.

During the process of pairing with a new hostX, the
ASD stores along with the host’s fingerprint (i.e.,EK(X) and
ML(X)) a pickle access token,PAX, unique to that host. Ac-
cess to all pickle files stored on disk byX is controlled at



EK(X) ML(X) PAX

EK(Y) ML(Y) PAY

EK(Z) ML(Z) PAY

Policy Store

marked with PAX

marked with PAY

Secured Pickle Partition

Figure 2: Policy storage and labeling inside the ASD, which stores the en-
dorsement key, measurement list and pickle access token for each paired
host. Blocks within the secure pickle partition that correspond to pickle files
are marked by thePA of the paired host. Note in this example theequiva-
lencebetween paired hosts Y and Z; they share the same access tokenPAY.

the disk block level: when a new pickle file is created by
X, the ASD will mark the relevant disk blocks withPAX.
All accesses to pickle file blocks are controlled byPA token
checks: when attempting to access disk blocks correspond-
ing to pickle files, the ASD checks the current “active”PA
(i.e. thePA of the host the ASD is currently paired with)
against thePA associated with the disk blocks in question.
If the PAs do not match, the pickle file blocks access to the
pickle file blocks is denied. Notice that this mechanism is
independent from higher-level, file system pickle file access
control mechanisms.

By usingPAs, the ASD prevents access at the disk block
level, making the pickle file inaccessible from other hosts—
even if the user is able to present the necessary credentials
for an unpickle operation. Therefore, by controlling access
to pickle files created by each host, we are able to control
the amount of privilege that can be gained through unpickle
operations and limit each host to its own separate, isolated
view of the file system.

The pickle access mechanism assumes that the ASD will
be able to identify pickle blocks and mark then accordingly.
This can be achieved by storing all pickle files in a secure
area on the disk, an operation feasible for disks supporting
the Opal trusted storage specification [21]. Alternately, the
pickle operation can issue anioctl() to notify the disk. Both
solutions rely on the correct implementation of the pickle op-
eration, which is one of the things that can be measured dur-
ing the integrity measurements performed using the TPM.

We introduce the idea ofequivalencebetween two hosts,
which can be specified as a policy parameter through the
disk’s administrative interface. By making two hosts equiva-
lent, we instruct the ASD to operate in exactly the same way
(i.e., apply the same policy) when either of two hosts’ fin-
gerprint is detected. Host equivalence is clearly marked on
the portable disk’s list of known hosts. Note that equivalent
hosts share the samePA and, therefore, have the identical
access rights to pickle files. This would allow file sharing
between equally trusted machines, e.g., two secure worksta-
tions in the same environment.

4.2 A Step Further: Full Labeling
Using thePAmechanism, the ASD can implement complete
pickle file isolation, and the notion of host equivalence can
enable full file sharing between hosts:all pickle files created
by X are inaccessible to hosts not equivalent toX. This level

of protection is a significant improvement over the current
situation, and may be adequate for most cases.

However, the mechanism may be too coarse-grained for
certain scenarios: we may want two hosts to share access to
some, but not all, disk blocks. Moreover, the sets of shared
disk blocks between different pairs of hosts may differ: host
X may be sharing one set of its disk blocks with hostY and
another (overlapping or not) set with hostZ.

Implementing such shared sets of disk blocks could be
achieved through the use of multiplePAs per host, each
representing a differentcategoryof trust between hosts, as
shown in Figure 2. The notion of implementing fine-grained
policies using such dynamic categories, is very analogous to
Asbestos labels themselves: In essence, this block sharing
behavior would require the equivalent of Asbestos labels at
the block level, which would allow for the definition of such
sharing, as well as many other, disk block access policies.

Moving to a full block labeling mechanism enforced at
the disk level would also result in a significant change of
the security model: disk block protection would no longer be
transparent and mandatory, but user-visible, user-controlled
and discretionary. Users would be able to instruct the drive
to create new categories by generating the disk equivalent of
Asbestos tags—which we calldtags—used to label the disk
blocks belonging to that category.

Although this mechanism may seem redundant in the pres-
ence of a trusted labeled file system, its merits become appar-
ent when one considers how the portable drive would operate
in a less trusted or friendly environment: disk block access
policies are defined and enforced within the portable drive
itself. This self-contained system is able to protect data even
in when the host is not co-operating, and could be used to
protect from malicious users, or even lost or stolen drives.
Essentially, the disk can act as a defense-in-depth mecha-
nism by using the policy received from the host as a type of
anomaly detection at the block layer if the request received
from the host appears to be inconsistent with what has been
laid out by the policy received from it. This could trigger a
runtime attestation to ensure that the host is in a good state
before fulfilling the request.

4.2.1 Labeling Pickle Blocks

By replacingPAs with labels, we could implement more
complex policies regarding how the ASD would restrict ac-
cess to pickle disk blocks. Once could envision a mechanism
operating in the following manner: When an ASD is paired
with a new hostX, it generates a new dtagx0 for that host.
Unless the user requests the creation of a new dtag forX, x0

will be used to provide the same security that thePAmecha-
nism would: all pickle blocks are labeled withx0 and access-
ing them would require holdingx0 privilege. If the user re-
quested the creation of a new category (by using the relevant
ioctl() call), the ASD would create a new dtagx1, associate
it with EK(X), and makex1 the “active” dtag—i.e. the one



used to label the disk blocks of all pickle files created byX
from that point on.

Along with each host’sEK the ASD would store a list of
dtags the host holds privilege over. When pairing with a new
hostY, a user with secure access to the ASD administrative
interface could grantY privilege with respect to dtags other
thany0, and granty0 privilege to already existing hosts.

4.2.2 Full Block Labeling

By labeling pickle blocks we still use block labels only to
determine access control rights over pickle disk blocks, es-
sentially implementing a capability system. Consequently,
we do not need to use the Asbestos split-label design. Us-
ing the full features of Asbestos labels (multiple dtag lev-
els and split-label design) would enable block-level infor-
mation flow tracking for this mechanism. However, imple-
menting dtag management logic and block labeling capabil-
ities within the ASD brings us a step closer to a fully la-
beled disk able to support disk-enforced, application-level
policies. Apart from labeling pickle file disk blocks for host
access control, the disk also needs to support labeling of all
disk data blocks, based on check-pointed application-level
Asbestos label policies. Either periodically or on-demand,
file system labels would be translated to block access restric-
tions, and pushed to the ASD’s secure storage using trusted
SCSI or ATA commands.

While this disk-wide block level policy enforcement en-
tails some complexity within the ASD (requiring label book-
keeping logic, label checking functions etc.), proposals such
as the rootkit-resistant disk prototype [1] show that the ad-
ministrative overhead of such operations can be very low,
on the order of 1%. Additionally, this enforcement model
provides some unique benefits. By downloading application
level policies to the ASD, in combination with secure pair-
ing and pickle disk block protection, the ASD would be able
to provide a complete, self-contained data security solution.
A self-contained, policy-enforcing portable ASD would be
able to provide protection against loss or theft: the drive
would refuse to grant access to pickle files when paired
with unknown hosts. If the pickle mechanism is bypassed
and a malicious user attempts to access raw disk blocks, the
ASD would still refuse access, due to failed disk block label
checks. Additionally, full disk block labeling would be able
to protect against compromised or low-integrity systems—
as detected by the security measurement capabilities of the
ASD—by performing label checks within the disk based on
the last high-integrity label policy downloaded to it (and not
having to rely on the integrity of the operating system).

Discussion Labeling individual blocks using application-
defined policies would also allow us to implement interest-
ing file sharing and locking semantics. By applying different
labels to blocks belonging to the same file, one could create
potentially usefully locking mechanisms, as well as imple-
ment file access control policies at a fine granularity. Ap-
plications that manipulate large files internally to implement

their own storage logic (e.g. databases storing row data in-
side a file) could benefit from such a mechanism, but block
labels are expected to be immutable and applications would
need take this into consideration. Additionally, making cer-
tain disk blocks inaccessible might cause anomalies: making
file system metadata blocks accessible to a process would re-
veal a lot of information about the file, even if some of the
actual data blocks are not accessible by that process.

5 RELATED WORK

Self-securing storage [19] is an effort to collocate secu-
rity metadata with the disk, but relies on an object-based
paradigm. We are uncertain when object-based storage will
appear and consider strictly a block-based approach that
does not require semantic awareness [18] or type differen-
tiation [17] from the disk. BitLocker [13] performs volume
encryption based on a TPM but does not protect against
post-boot OS compromise. There is also no support for mul-
tiple pairing as our solution provides. Protection mecha-
nisms for storage are numerous; one of the more intriguing
schemes is Plutus [7], which provides lockbox-based encryp-
tion; SNAD [14] provides a similar mechanism. In these sys-
tems, a symmetric key is guarded using public-key encryp-
tion; with Plutus, for example, there are reader and writer
keys. A problem with this approach is that while users can be
authorized through giving out public keys, there is no method
of ensuring the security of the underlying platform being at-
tached to.

Persistent labeling has been addressed by both research
operating systems, such as Asbestos, HiStar [23] and
Flume [9], as well as commercial implementation such as
SELinux [11]. Each of these systems addresses label pol-
icy persistence using its own mechanism, including Asbestos
pickle files, HiStar’s single-level store, Flume’s use of its ref-
erence monitor for persistence, and SELinux’s file security
context labels. However, the problems arising from portable
storage have not been addressed by any of these systems,
whose mechanisms rely on assumptions about the correct-
ness and integrity of the relevant software mechanisms (stor-
age stack, file system or reference monitor implementation
etc) to ensure data safety.

6 CONCLUSION

This paper has proposed an architecture for block level pol-
icy enforcement at the disk layer, to provide multiple levels
of security for the potentially many systems that can attach
to portable storage. This allows users to access information
on their disk without exposing sensitive information to po-
tentially malicious systems or those that may become com-
promised during use. We use Asbestos labels in conjunction
with the Firma secure boot mechanism to provide guaran-
tees of host integrity and describe how we can ensure that
the appropriate security policies are maintained depending
on the host connected to. The collaborative security between



the host system and the disk provides an interesting new se-
curity model and challenging issues as we further explore
this problem space and implement prototypes demonstrating
these new functionalities.

REFERENCES
[1] K. Butler, S. McLaughlin, and P. McDaniel. Rootkit-Resistant

Disks. InProc. 15th ACM Conference on Computer and Com-
munications Security (CCS’08), Alexandria, VA, USA, Oct.
2008.

[2] K. Butler, S. McLaughlin, T. Moyer, J. Schiffman, P. Mc-
Daniel, and T. Jaeger. Firma: Disk-Based Foundations for
Trusted Operating Systems. Technical Report NAS-TR-0114-
2009, Network and Security Research Center, Pennsylvania
State University, University Park, PA, Apr. 2009.

[3] Department of Defense.Trusted Computer System Evaluation
Criteria (Orange Book), Dec. 1985. DoD 5200.28-STD.

[4] P. Efstathopoulos and E. Kohler. Manageable fine-grained in-
formation flow. InProc. the 3rd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems, Galsgow, UK, Apr.
2008.

[5] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazìeres, F. Kaashoek, and R. Mor-
ris. Labels and event processes in the Asbestos operating sys-
tem. In Proc. 20th ACM Symposium on Operating Systems
Principles (SOSP ’05), Brighton, England, Oct. 2005.

[6] Financial Times. Sensitive RAF data stolen,
May 2009. http://www.ft.com/cms/s/0/
86b1ec88-498d-11de-9e19-00144feabdc0.
html.

[7] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable Secure File Sharing on Untrusted
Storage. InProceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST’03), San Francisco, CA,
Apr. 2003.

[8] B. Kauer. OSLO: Improving the Security of Trusted Com-
puting. In Proc. of the 16th USENIX Security Symposium,
Boston, MA, Aug. 2007.

[9] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for stan-
dard OS abstractions. InProc. the 21th ACM Symposium on
Operating Systems Principles (SOSP ’07), Stevenson, Wash-
ington, Oct. 2007.

[10] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor Support
for Identifying Covertly Executing Binaries. InProceedings
of the 17th USENIX Security Symposium, San Jose, CA, Aug.
2008. USENIX Association.

[11] P. Loscocco and S. Smalley. Integrating flexible sup-
port for security policies into the Linux operating sys-
tem. InProc. 2001 USENIX Annual Technical Conference—
FREENIX Track, pages 29–40, June 2001.

[12] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D.
McDonell. Linux kernel integrity measurement using contex-
tual inspection. InSTC ’07: Proceedings of the 2007 ACM
workshop on Scalable trusted computing, pages 21–29, 2007.

[13] Microsoft. BitLocker Drive Encryption Technical
Overview. http://technet.microsoft.com/
en-us/library/cc732774.aspx.

[14] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C. Reed.
Strong Security for Network-Attached Storage. InProceed-
ings of USENIX FAST’02, Monterey, CA, USA, Jan. 2002.

[15] National Archives and Records Administration.
Missing Clinton Administration Hard Drive, May
2009. http://www.archives.gov/news/
clinton-hard-drive-faq-2009-5-20.pdf.

[16] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Ar-
chitecture. InProc. 13th USENIX Security Symp., San Diego,
CA, Aug. 2004.

[17] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-Safe
Disks. InProc. 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, WA, Nov. 2006.

[18] M. Sivathanu, V. Prabhakarn, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. InProc. 2nd USENIX
Conference on File and Storage Technologies (FAST’03), San
Francisco, CA, USA, Apr. 2003.

[19] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Protecting
Data in Compromised Systems. InProc. 4th Symp. on Op-
erating Systems Design and Implementation (OSDI’00), San
Diego, CA, Oct. 2000.

[20] TCG. TPM Main: Part 1 - Design Principles. Specification
Version 1.2, Level 2 Revision 103. TCG, July 2007.

[21] TCG. TCG Storage Security Subsystem Class: Opal. Speci-
fication Version 1.0, Revision 1.0. Trusted Computing Group,
Jan. 2009.

[22] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn,
C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières.
Labels and event processes in the Asbestos operating system.
ACM Transactions on Computer Systems, 25(4):11:1–11:43,
Nov. 2007.

[23] N. B. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiStar. In
Proc. 7th Symposium on Operating Systems Design and Im-
plementation (OSDI ’06), Seattle, WA, Nov. 2006.


	Introduction
	Asbestos Label Persistence
	Secure Disks and Labels
	Assumptions and Security Goals
	Bootstrapping and Integrity Checks
	Secure Pairing

	Protection Mechanisms
	Pickle File Protection
	A Step Further: Full Labeling
	Labeling Pickle Blocks
	Full Block Labeling


	Related Work
	Conclusion

