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Abstract

It has been proven in theory and through simula-
tions [3, 9] that a low-rate TCP-targeted Denial-of-Service
(DoS) attack is possible by exploiting the retransmission
timeout (RTO) mechanism of TCP. In contrast to most DoS
attacks, this exploit requires periodic, low average volume
traffic in order to throttle TCP throughput. Consequently
this attack is hard to detect and prevent, since most DoS
detection systems are triggered by high-rate traffic.

For the attack to be successful, the attacker must inject
a short burst of traffic, capable of filling up the bottleneck
buffers, right before the expiration of the sender’s RTO.
This forces the sender’s TCP connections to timeout with
very low throughput. The effectiveness of the attack depends
on the attacker’s synchronization with the victim’s RTO.
Certain commercial systems follow the guidelines of RFC-
2988 [4] (suggesting a minimum RTO of 1 sec), making this
synchronization is far from impossible, while popular oper-
ating systems using lower minRTO values (e.g. Linux) are
still vulnerable to an attacker using a low latency network.

RTO randomization was proposed by [9] as a defense
against this attack, since it prevents the attacker from
synchronizing attack traffic with RTO expiration intervals.
In this paper, we study the results of the attack on a real
system (Linux), and evaluate the effectiveness the of RTO
randomization in defending against low-rate TCP targeted
DoS attacks, showing that the method can prevent a TCP
flow from being throttled from attack traffic.

1 Introduction

Denial-of-Service (DoS) attacks aim to prevent legit-
imate users from making use of a service, by claiming
enough of the service’s resources to render it unavailable.
In doing so, DoS attacks may aggressively consume re-
newable resources (such as CPU cycles or network band-
width) thereby launching a “busy attack”, or try to allocate
and hold large portions of non-renewable, limited resources
(e.g. memory, disk or buffer space) thus bringing down the
system due to resource starvation through this “claim-and-

hold attack”. In both of these cases, the DoS is performed
by applying aggressive tactics, that obviously aim at limit-
ing the victims access to the service, therefore making the
reasons for the lack of service easier to observe and iden-
tify. The irregularities caused to system behavior and net-
work traffic by many such DoS attacks, makes them easier
to detect and defend against.

TCP’s retransmission timeout (RTO) mechanism is in-
tended to deal with cases of severe congestion and multiple
losses. If a sender fails to receive an ACK after the timeout
period, it reduces its congestion window to one and retrans-
mits the packet.

Following the recommendation made by [4], some sys-
tems implement a minimum RTO (minRTO) of 1 sec. Val-
ues for minRTO greater than or equal to 1 sec make these
systems vulnerable to a low-rate TCP-targeted DoS attack,
like the one presented by [3]. This attack could be charac-
terized as “asymmetric”, since it uses limited resources to
throttle the throughput of the victim’s TCP connections. By
doing so, this attack produces the negative effects of a typ-
ical DoS attack, except it targets only TCP flows and can
often elude detection since it sends traffic at a relatively low
average rate.

A defense against this type of DoS attack has been pro-
posed by [9] involves the randomization of the minRTO.
Instead of enforcing a fixed minRTO of 1 sec, the proposed
defense chooses a random minRTO value between 1 and 1.2
uniformly. Simulation has shown that although this solution
does not eliminate the vulnerability, it is able to achieve sig-
nificantly better throughput when under attack, by making
it harder for the attacker to synchronize with the victim and
completely throttle TCP connection throughput. Although
simulation results are promising, it is unclear how effective
it can be when used in real systems that are vulnerable to
TCP-targeted low-rate DoS attack.

Nowadays, the most popular systems implement TCP
without using randomized minRTO values. Additionally,
many systems adhere to the 1 sec minRTO value proposed
by [4], while some systems use even even higher values
(e.g. some versions of OpenBSD and NetBSD use 1 sec,
Solaris 8 uses 4sec while some versions of Microsoft Win-
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dows probably use values of at least 1 sec). This paper in-
vestigates the effectiveness of the attack in Linux, for both
its standard minRTO value and the 1 sec minRTO. Further-
more, the paper presents the implementation of the “ran-
domized RTO” defense in the Linux kernel and study its
effectiveness in a real system.

The paper is organized as follows: Section 2 briefly
presents related work, while Section 3 gives an overview
of TCP’s timeout mechanism and insight to the vulnerabil-
ity in question. Section 4 presents the low-rate TCP-targeted
attack in more detail, and Section 5 describes the proposed
solution and its implementation in the Linux kernel. In Sec-
tion 6 we present the experimental results.

2 Related Work

The low-rate TCP-targeted attack investigated has been
identified [3] and analyzed, showing in theory that it can
throttle the throughput of a TCP connection. Router based
methods and randomization where proposed by [3] as a de-
fense.

The effectiveness of the attack and RTO randomization
where studied in [9]. Simulation, showed that the attack can
be very effective and randomization significantly improves,
but can not solve the problem entirely. This study attempts
to test the effectiveness of the attack on a real system, and
also implement and measure the effectiveness of RTO ran-
domization.

Recent studies [5] claim that the 1 sec (or higher) min-
RTO proposed by [4] is overly conservative for modern net-
works, since modern operating systems’ timer granularity
and next-generation network design cancel the reasons that
lead to the choice of such a high value. In fact, the 1 sec
minRTO, is shown to cause performance degradation, espe-
cially for certain classes of wireless users.

Low-rate TCP-targeted attacks have been shown to be ef-
fective and hard to detect and defend against not only in the
setting examined by this study, but also at the router level.It
has been shown by [10] that routers with default settings are
also vulnerable to such attacks, leading to significant BGP
performance problems, such as session resets and increased
convergence delays.

3 TCP Timeout Mechanism

TCP congestion control is essential to TCP’s per-
formance and operates in two timescales depending on
the degree of congestion the link is experiencing. On
smaller timescales of round trip times (RTT) TCP performs
additive-increase multiplicative-decrease(AIMD) control,
aiming at forcing each flow to transmit at the fair rate of its
bottleneck link. At times of severe congestion in which mul-
tiple losses occur, TCP operates on the longer timescales of

retransmission time out(RTO), which the low-rate DoS at-
tack tries to exploit.

The TCP congestion control mechanism uses the notion
of congestion window(cwnd). Each TCP sender uses the
congestion window to calculate the transmission window
based on the feedback it gets from the network. This mech-
anism helps avoid congestion since both the receiver’s ca-
pabilities and the networks characteristics are taken intoac-
count by the sender.

To address temporary congestion, when TCP receives
three duplicate ACKs for a packet, it uses thefast-retransmit
mechanism. In cases of heavy congestion though, when
three duplicate ACKs do not reach the sender, the time-
out mechanism is triggered, signifying that a packet has not
been acknowledged although a specific period of time—the
RTO—has elapsed. The calculation of the RTO according
to [4] is based on the following formula:

RTO= max(SRTT+4∗RTTVAR,minRTO)

In this equation,RTTVARis the variation of the round-trip
time (RTT) andSRTTis the smoothened round-trip time,
based on recent measurements.

Under heavy congestion, TCP reduces its congestion
window size to 1 segment and the the value of RTO is set to
its minimum (minRTO). The recommended minimum value
for the minRTO is 1 sec, as proposed by RFC-2988 [4]. If
the RTO expires and the packet is lost again the exponential
back-off continues and the sender doubles the value of RTO
(2sec) and retransmits the packet. The sender then waits for
the 2sec RTO to expire and if the packet still hasn’t been
transmitted successfully the exponential back-off continues
(RTO is set to 4sec and so on). This mechanism was chosen
for dealing with cases of heavy congestion since it is the
most conservative sender behavior.

4 Low-Rate TCP-Targeted Attack

TCP’s congestion control mechanism is well suited for
dealing with high congestion, but it has an exploitable flaw:
the values of RTO are predefined (and therefore predictable)
under heavy congestion. The minimum suggested RTO is
1 sec and, therefore, the possible values during exponen-
tial back-off are multiples of 1 sec. This property of the
algorithm makes the system vulnerable to attacks that use
a short, properly timed high-rate burst of packets to fill the
bottleneck buffers, right before the RTO expires.

An attacker that knows the timing of the sender can use
a “square wave” attack traffic pattern (high rate, short du-
ration bursts), in order to force the sender to repeatedly
enter the retransmission timeout state. Since the bottle-
neck buffers will be filled with attack traffic, the through-
put achieved by the sender will be near-zero. Such an at-
tack traffic pattern—shown in Figure 1—transmits bursts of



packets at a set rate for a set time and then waits out the
inter-burst period before bursting again. It does so in the
hopes that subsequent bursts will occur just as victim flows
begin retransmission. The attack has three properties: a send
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Figure 1. A low-rate attack can be approxi-
mated as a square wave.

rate, a burst length, and an inter-burst period.
The send rate is the rate at which the attacker sends pack-

ets into the network. Since the intention of the attacker is to
quickly fill the the bottleneck buffers, exactly before the vic-
tim attempts to retransmit, this rate must be higher than the
bandwidth of the bottleneck link. If the rate is high enough
to fill the bottleneck buffers, the victim’s packets will be
dropped and this packet loss will cause TCP flows to time-
out.

The burst length determines how long the attacker floods
packets during each burst. This depends on the send rate,
RTT of the flows, and bandwidth of the bottleneck link. If
the burst length is too long, then the attacker risks being
detected, while a short length may not be adequate to fill
the bottleneck buffers (for a given rate). The inter-burst pe-
riod (IBP) is the time that elapses between two consecutive
bursts of attack traffic. Both send rate and burst length need
to be chosen carefully by the attacker for the attack to be
successful and remain undetected. An excessively high rate
or an unnecessarily long burst length may trigger router-
based DoS protection mechanisms. It was suggested by [3]
that a burst length less than 300 msec would allow the low-
rate attacker to go relatively undetected. The experiments
show that a burst length of 200 msec is sufficient to produce
zero throughput with the proper inter-burst period.

The inter-burst period dictates the frequency at which the
attacker transmits bursts of packets. An attacker would want
to synchronize with the victim by picking an inter-burst pe-
riod that corresponds exactly to the victim’s RTO. This way,
the attacker can throttle the throughput while transmitting
the least amount of data possible to reduce the chances of
being detected. Notice that the only network characteristic
the attacker needs to know in order to launch the attack is
the rate of the bottleneck link.

As discussed in [3], the attacker can further reduce the

chances of being detected by router-based detection mech-
anisms using a double-rate burst of traffic: first the attacker
utilizes a very high rate (higher than the bottleneck link),for
a very short period of time, and subsequently the attacker
reduces the rate of the burst traffic to the bottleneck link’s
rate. The initial, high rate is used to quickly fill the buffers
of the bottleneck link and the secondary rate ensures that the
buffers remain full for the duration of the burst length. This
approach requires a very high rate only for the initial very
small period of time and therefore is harder to detect. With-
out loss of generality, this study considers only the single-
rate attack.

4.1 Linux TCP Implementation

Linux 2.4 kernels implements congestion control using
the TCP New Reno [7] standard. Starting from 2.6.8 the
Linux kernel implements Binary Increase Congestion con-
trol TCP [8] and versions 2.6.19 and above use CUBIC
TCP [6].

What is interesting is the fact that Linux uses a minRTO
of 200 msec, which deviates from the 1 sec minRTO stan-
dard, making the attack harder. Achieving fine synchroniza-
tion of a 200 msec IBP square wave with the victim is hard,
and filling the bottleneck buffers using such short IBP might
require the use of a very high rate—potentially detectable
by DoS defense mechanisms.

5 Randomized RTO Defense

Many protocols (e.g. link layer protocols such as Ether-
net) use randomized timeouts during exponential back-off.
Based on the observation that many protocols (e.g. Ether-
net) use randomized timeouts during exponential back-off,
[3] proposes a defense against low-rate TCP-targeted DoS
attacks: instead of using a fixed value for the minRTO (e.g.
1 sec), minRTO is randomized around that value, making it
hard for the attacker to synchronize with the RTO expira-
tion intervals, and use attack traffic to flood the bottleneck
buffers with a properly timed burst. Simulation results pre-
sented by [9] show that randomization of the RTO is indeed
a possible solution.

There are three different ways one could choose to ran-
domize minRTO. The most conservative approach, which
overestimates the RTO, would be to pick a number in the
range [t, t+1) Alternatively, values within the ranges [t-0.5,
t+0.5) and [0.5*t, 1.5*t) could also be used. Simulations and
analysis done by [9] show that the range of randomization
does not affect the results significantly. For the purposes of
this study is is assumed that RTO randomization is done
within the [t-0.5, t+0.5) range.



5.1 Implementation

Although Linux is less vulnerable because of its 200
msec minRTO, the vulnerability in the design of the TCP
timeout mechanisms is existent and other systems using
higher minRTO values (e.g. OpenBSD, Solaris 8 etc) may
be susceptible to this attack. The purpose of this study is
to test the effectiveness of the attack on real systems and
try to reproduce the results of the simulations. This study is
using the Linux kernel 2.4.22, and performed the necessary
modifications to it1

Two versions of the Linux kernel were used: The first
version was modified so that the minRTO was bounded to
1 sec in order to test the effectiveness of the attack. This
required adjusting the RTO every time it gets calculated
from the values of SRTT (smoothened RTT) and RTTVAR.
When switching from a 200 msec minRTO to 1 sec, it was
necessary to properly initialize RTTVAR and modify the
tcp boundrto() Linux function to perform minRTO lower
bound checking as well.

In order to measure the effectiveness of randomization in
defending against the attack, a second Linux kernel version
was created by modifying the “1 sec RTO” kernel so that the
value of RTO is randomized within the range [t-0.5, t+0.5).
Initially, the minRTO is adjusted so that it is not below 1 sec,
and afterwards a random number is generated to perform the
desired RTO randomization.

6 Experiments and Evaluation

Experiments were conducted using the TCP test-bed,
shown in Figure 2. The sender (victim) and attacker (sup-
posedly on the same subnet) were connected to the receiver
through an intermediate node running DummyNet [1], used
to simulate the Internet. The sender and receiver are im-

Figure 2. The experimental test-bed.

plemented using the Iperf [2] bandwidth measurement tool
(client–server mode). The receiver has its own 50-slot
queue, while the sender and the attacker share a 50-slot bot-
tleneck queue, shown in Figure 2, that is filled by the at-
tacker’s periodic bursts of traffic, forcing the sender’s TCP

1Note that 2.6 kernels are expected to behave similarly to 2.4 regard-
ing the low-rate TCP-targeted attack, since they also use a 200 msec fixed
value for minRTO.

connections to timeout. All hosts are connected to the test-
bed through bi-directional 1.5 Mbps links, while the RTT is
set to 40ms. A custom attacker was implemented to produce
a low-rate attack, generating 3 Mbps of traffic in periodic
bursts of specified lengths and inter-burst periods.

For each of the three Linux kernel versions we used (reg-
ular Linux kernel, “1 sec minRTO” and “1 sec random-
ized RTO”) we ran multiple 20 seconds attacks, allowing
the sender to transmit for 2 seconds before starting the at-
tacker. The results of previous studies have shown that the
important inter-burst period values are at 0.5 and 1 second,
because they coincide with the 1 sec RTO and are most vul-
nerable to the attack.

6.1 Results and Evaluation

The first test attempts to evaluate how the regular Linux
kernel reacts to a low-rate attack. The attack is expected to
be less effective since the attacker is specifically aimed at
systems with an RTO of (multiples of) 1 sec, while Linux
has an RTO of 200 msec The throughput graph is presented
in Figure 3. Note that the throughput is similar to what is
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Figure 3. Throughput of the unmodified 2.4.22
kernel with and without the DoS attack.

expected for a “1 sec minRTO” vulnerable system, only
slightly less effective. As the burst frequency gets closerto
200 msec the throughput drops, but the throughput never
drops to zero because the attacker process is geared toward
a system with a minRTO of 1 sec. An attack with an inter-
burst period of 200 msec could be generated, but it would
require a much shorter burst length and much higher burst
rate, making it much less stealthy. Additionally, synchro-
nization at such high frequency may be unrealistic in prac-
tice.

The next test uses the modified “1 sec minRTO” kernel.
As shown in Figure 4, there is a major drop in through-
put for inter-burst periods of 0.5 and 1 sec—which is in
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Figure 4. Throughput of the “1 sec minRTO”
kernel with and without the DoS attack.

agreement with the simulation results reported by [3, 9]. In
this case the attacker is able to synchronize with the 1 sec
minRTO and each retransmission encounters severe packet
loss. However, if the inter-burst period is not synchronized
with the RTO, higher throughput is achieved: throughput is
not affected significantly for inter-burst periods that arenot
even divisors of 1 sec. Note that the existence of a very small
throughput at the 0.5 and 1 sec inter-burst periods is due to
the fact that the sender was allowed to transmit for 2 sec-
onds before engaging the attacker. Once the attack began,
throughput was throttled to zero for both of these cases.
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Figure 5. Throughput of the “randomized
RTO” kernel with and without the DoS attack.

The next step was to test the modified Linux kernel that
randomizes the RTO between 0.5 and 1.5sec. This produces
RTOs that average to 1 sec yet do not allow a low-rate at-
tacker to predict when the sender will attempt retransmis-
sion. The results are shown in Figure 5.

The throughput for the “randomized RTO” kernel is dra-

matically better than the “1 sec minRTO” kernel for at-
tack inter-burst periods of 0.5 and 1 sec In fact, for the 1
sec inter-burst period, the “randomized RTO” kernel pro-
duced a throughput of nearly 40%, which is a significant
improvement—considering that the attack is flooding the
network 20% of the time. In addition, it is a significant im-
provement from the “1 sec minRTO” kernel which had zero
throughput at this point.

Certain interesting observations can be made about the
results of Figures 3,4 and 5. First, notice that the unmodi-
fied Linux kernel suffers significant throughput degradation
even from the attack targeted to “1 sec minRTO” systems.
Furthermore, although the “1 sec minRTO” kernel is com-
pletely throttled by the attack, the “randomized RTO” ker-
nel, does not suffer throughput throttling. In order to throttle
the throughput of the “randomized RTO” kernel, an attacker
would simply resort to a standard DoS attack that transmits
almost constantly, making it relatively easy to detect. There-
fore, randomization is indeed an effective defense against
low-rate DoS attacks (although it can not provide a com-
plete solution).

The results demonstrate the effects of different inter-
burst period lengths. It is also interesting to see how the
burst length affects the effectiveness of the attack: the at-
tacker must adjust the burst length so as to maximize the
effects of the attack (larger burst length) and avoid detec-
tion (shorter burst length). The burst rate was kept at 3
Mbps and measured the throughput for inter-burst periods
of 0.5 and 1 sec while varying the burst lengths from 50
to 200 msec. The results can be seen in Figures 6, 7 and 8.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 40  60  80  100  120  140  160  180  200

T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Burst length (ms)

Linux
1s RTO

Random RTO

Figure 6. Throughput of the three kernel ver-
sions using a 0.5 sec IBP.

Measurements show that using a burst length of 200 msec is
adequate to throttle throughput in the “1 sec minRTO” ker-
nel. Also, note that the “1 sec minRTO” kernel’s throughput
can be throttled with an even shorter burst length (around
150 msec) when the inter-burst period is 1 sec (completely
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Figure 7. Throughput of the three kernel ver-
sions using a 1 sec IBP.
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Figure 8. Averaged throughput results for the
0.5 and 1 sec IBP cases.

synchronized with the minRTO). In addition, the “random-
ized RTO” kernel is shown to perform better than the “1
sec minRTO” kernel in these “zero throughput” choking
points. In any case, the results show that the threat is higher
than initially estimated: the 300 msec burst length proposed
by [3] is an over-estimation, since a 200 msec burst is ade-
quate.

7 Conclusion

Many protocols randomize retransmission timeout val-
ues, but TCP uses multiples of a fixed minimum RTO value
(e.g. 1 sec) during its exponential back-off stage. These stat-
ically defined, predictable RTO values make the protocol
vulnerable to a low-rate attack, that can not be easily de-
tected by current DoS attack defense mechanisms due to its
very low average traffic.

This work tests the effectiveness of the attack and the de-
fense against using the standard Linux kernel, the modified
“1 sec minRTO” kernel and the “randomized RTO” kernel.
Our results confirm simulation results and underline an im-
portant threat: systems that currently use minRTO values
of 1 sec (or higher) are particularly vulnerable to this at-
tack, since their throughput is throttled when the attacker
achieves synchronization with the sender.

Experiments with the “randomized RTO” kernel show
randomization can greatly improve performance, by pre-
venting throughput throttling, especially in the case of 1 sec
IBP, where the “randomized RTO” kernel achieves 40% of
the link’s maximum throughout under attack.

Finally, it is shown that a 200 msec burst length is capa-
ble of maximizing the effects of the attack in all cases.
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