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1. INTRODUCTION

Breaches of Web servers and other networked systems routinely divulge private
information on a massive scale [Lemos 2005; News10 2005; Trounson 2006].
The kinds of software flaws that enable these breaches will persist, but systems
can be designed to limit exploits’ possible impact. An effective way to contain
exploits is application-level data isolation, a policy that prevents a server act-
ing for one principal from accessing data belonging to another principal—an
instance of the principle of least privilege [Saltzer and Schroeder 1975]. Such
a policy, enforced by the operating system at the behest of a small, trusted part
of the application, would stop whole classes of exploits, including SQL injection
and buffer overruns, making servers much safer in practice.

Unfortunately, current operating systems cannot enforce data isolation.
Even the weaker goal of isolating Web services from one another requires fiddly
and error-prone abuse of primitives designed for other purposes [Krohn 2004].
Most servers thus retain the inherently insecure design of monolithic code with
many privileges, including the privilege to access any and all application data.
As a result, high-impact breaches continue to occur.

New operating system primitives are needed [Krohn et al. 2005], and the
best place to explore candidates is in the unconstrained context of a new OS.
This article presents Asbestos, a new operating system that can enforce strict
application-defined security policies, and the Asbestos Web server, an efficient,
unprivileged server that isolates different users’ data.

Asbestos’s contributions are twofold. First, all access control checks use As-
bestos labels, a primitive that combines advantages of discretionary and nondis-
cretionary access control. Labels determine which services a process can invoke
and with which other processes it can interact. Like traditional discretionary
capabilities, labels can be used to enumerate positive rights, such as the right
to send to the network. Unlike traditional capability systems, Asbestos labels
can also track and limit the flow of information. As a result, Asbestos supports
capability-like and traditional multilevel security (MLS) policies [Department
of Defense 1985], as well as application-specific isolation policies, through a
single unified mechanism.

Second, Asbestos’s event process abstraction lets server applications effi-
ciently support and isolate many concurrent users. In conventional label sys-
tems, server processes would quickly become contaminated by multiple users’
data and lose the ability to respond to any single user. One possible fix is a
forked server model, in which each active user has her own forked copy of the
server process; unfortunately, this resource-heavy architecture burdens the OS
with many thousands of processes that need memory and CPU time. Event pro-
cesses let a single process keep private state for multiple users, but isolate that
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state so that an exploit exposes only one user’s data. The event process disci-
pline encourages efficient server construction, and in our experiments, servers
can cache tens of thousands of user sessions with low storage costs.

Asbestos labels and event processes let us build data isolation into a chal-
lenging application, the Asbestos Web server. This dynamic Web server isolates
the data of each application user so that exploited Web application code cannot
access the secret data of other users. Measurements on an x86 PC show that an
Asbestos Web server can support comprehensive user isolation at a cost of about
1.4 memory pages per user for more than a hundred thousand users. Despite
processes whose labels contain hundreds of thousands of elements, the server
is competitive with Apache on Unix. Asbestos shows that an OS can support
flexible, yet stringent security policies, including information flow control, even
within the challenging environment of a high-performance Web server.

The rest of this article is organized as follows. First we examine related work
(Section 2) and then explain our technical goals and their consequences for the
Asbestos design (Section 3). In Section 4, we give a brief overview of Asbestos
before detailing Asbestos labels (Section 5), label persistence (Section 6), and
the event process model (Section 7). Section 8 presents the Asbestos Web server
and discusses how it uses Asbestos features to define a data isolation policy.
The article finishes with a discussion of covert channels (Section 9) and an
evaluation of Asbestos’s performance in the context of our example application
(Section 10).

2. RELATED WORK

Mandatory access control (MAC) systems enforce end-to-end security policies by
transitively following causal links between processes. Operating systems have
long expressed and enforced these policies using labels [Department of Defense
1985]. Labels assign each subject and object a security level, which tradition-
ally consists of a hierarchical sensitivity classification (such as unclassified,
secret, top-secret) in each of a set of categories (nuclear, crypto, and so forth).
To observe an object, a subject’s security level must dominate the object’s. For
example, a file with secret, nuclear data should only be readable by processes
whose clearance is at least secret and whose category set includes nuclear. Se-
curity enhancement packages supporting labels are available today for many
popular operating systems, including Linux [Loscocco and Smalley 2001] and
FreeBSD [Watson et al. 2003].

MAC systems generally aspire to achieve some variant of the ∗-property [Bell
and La Padula 1976]: whenever a process P can observe object O1 and mod-
ify object O2, O2’s security level must dominate O1’s. In the absence of the
∗-property, P could leak O1’s contents by writing it to O2, leaving O1’s confiden-
tiality at P ’s discretion. Of course, real operating systems implement some way
to declassify or “downgrade” data—for example, as a special privilege afforded
certain users if they press the secure attention key [Karger et al. 1990]—but
this lies outside the main security model.

Most MAC systems are geared towards military specifications, which re-
quire labels to specify at least 16 hierarchical sensitivity classifications and
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64 nonhierarchical categories [Department of Defense 1985]. This label format
severely limits what kinds of policies can be expressed. The fixed number of
classifications and categories must be centrally allocated and assigned by a se-
curity administrator, preventing applications from crafting their own policies
with labels alone. Thus, MAC systems typically combine labels with a separate
discretionary access control mechanism. Ordinary Unix-style users and groups
might enforce access control within the secret, nuclear level.

More recent MAC operating systems, such as SELinux and TrustedBSD,
generally require administrator privilege to change the active security policy.
The SELinux Policy Server [MacMillan et al. 2006] has tried to correct this
shortcoming by adding a meta-policy, which specifies how different subjects
can modify the policy. However, the security administrator must still antici-
pate and approve of the policy structure of every individual application. These
restrictions prevent applications from using MAC primitives as security tools
without the cooperation and approval of the security administrator.

Unlike previous systems, Asbestos lets any process dynamically create non-
hierarchical security categories, which we call tags. An application can con-
struct an arbitrary security policy involving tags it creates, but remains con-
strained by external policies involving other tags. This makes Asbestos labels
an effective tool for application and administrator use. Asbestos also brings
privilege into the security model. A process with privilege for a tag can bypass
the ∗-property with respect to that tag either by declassifying information or
by raising the security clearance of other processes. As described later, the As-
bestos system call interface has other novel features that facilitate label use,
including discretionary labels that apply to single messages.

The idea of dynamically adjusting labels to track potential information flow
dates back to the High-Water-Mark security model [Landwehr 1981] of the
ADEPT-50 in the late 1960s. Numerous systems have incorporated such mech-
anisms, including IX [McIlroy and Reeds 1992] and LOMAC [Fraser 2000]. The
ORAC model [McCollum et al. 1990] supported the idea of individual origina-
tors placing accumulating restrictions on data, somewhat like creating tags,
except that data could still only be declassified by users with the privileged
Downgrader role.

Asbestos labels more closely resemble language-level flow control mecha-
nisms. Jif [Myers and Liskov 2000], which supports decentralized privilege by
allowing different code modules to “own” different components of a label, was
a particular inspiration. Asbestos takes a label model as flexible as Jif ’s and
applies it among processes, rather than within them. Labels in Jif have dis-
tinct components for confidentiality and integrity. A confidentiality policy is
built from atoms such as “principal a allows principal b to read this object,”
where principals are arranged in a hierarchy. Asbestos labels achieve similar
goals with a unified namespace for both confidentiality and integrity, and with
principals that are not hierarchically related and that can be created at any
time. As a programming language extension, Jif can perform most of its label
checks statically, at compile time. This avoids affecting control flow on failed
checks, a source of implicit information flows [Denning and Denning 1977]. As-
bestos’s current design avoids some implicit information flows, and by adopting
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ideas from successor operating systems—in particular, by requiring processes
to actively change their own labels [Zeldovich et al. 2006] rather than updat-
ing labels implicitly during message communication—Asbestos could avoid all
implicit flows related to label checks.

Asbestos uses communication ports similar to those of previous message-
passing operating systems [Rashid and Robertson 1981; Tanenbaum et al. 1990;
Rozier et al. 1988; Liedtke 1995; Mitchell et al. 1994; Cheriton 1988], some of
which can confine executable content [Jaeger et al. 1999], others of which have
had full-fledged mandatory access control implementations [Branstad et al.
1989]. Asbestos ports are a specialized type of tag, and can appear in labels.
The combination of ports and tags allow labels to emulate security mechanisms
from discretionary capabilities to multilevel security.

In theory, capabilities alone suffice to implement mandatory access control.
For instance, KeyKOS [Key Logic 1989] achieved military-grade security by iso-
lating processes into compartments. EROS [Shapiro et al. 1999] later success-
fully realized the principles behind KeyKOS on modern hardware. Implement-
ing mandatory access control on a pure capability system, such as KeyKOS,
requires the deployment of reference monitors at compartment boundaries to
prevent inappropriate capabilities from escaping. A number of designs have
therefore combined capabilities with authority checks [Berstis 1980], interpo-
sition [Karger 1987], or even labels [Karger and Herbert 1984]. Asbestos can
implement capability-like policies within its label mechanism for those cases
where capability policies are the best fit.

Mandatory access control can also be achieved with unmodified traditional
operating systems through virtual machines [Goldberg 1973; Karger et al.
1990]. For example, the NetTop project [VMware 2000] uses VMware for multi-
level security. Virtual machines have two principal limitations, however: per-
formance [King and Chen 2003; Whitaker et al. 2002] and coarse granularity.
One of the goals of Asbestos is to allow fine-grained information flow control
so that a single process can handle differently labeled data. To implement a
similar structure with virtual machines would require a separate instance of
the operating system for each label type.

3. GOAL

In a nutshell, Asbestos aims to achieve the following goal:

Asbestos should support efficient, unprivileged, and large-scale server
applications whose application-defined users are isolated from one
another by the operating system, according to application policy.

This is difficult to achieve on any other operating system. We evaluated Asbestos
by implementing a secure application that requires all components of the goal,
namely a dynamic-content Web server that isolates user data. The rest of this
section expands on and clarifies the goal. We concentrate on server applications
as they are in many ways the most challenging applications that operating
systems must handle. Nevertheless, Asbestos mechanisms should aid in the
construction of other types of software; for example, email readers could use
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policies to restrict the privileges of attachments, reducing the damage inflicted
by users who unwittingly run disguised malicious code.

A large-scale server application responds to network requests from a dy-
namically changing population of thousands or even hundreds of thousands of
users. A single piece of hardware may run multiple separate or cooperating
applications. Examples include Web commerce and bulletin-board systems, as
well as many pre-Web client/server systems. Such applications achieve good
performance through aggressive caching, which minimizes stable storage de-
lays. By efficient, then, we mean that an Asbestos server should cache user
data with low overhead. This would be simple if the cache were trusted, but
we want to isolate different users’ data so that security breaches are contained.
The Asbestos event process mechanism aims to satisfy this requirement.

Unprivileged means that installing and running secure software should not
require system privilege. For instance, the system administrator’s cooperation
should not be necessary to install an application, and application maintainers
should be able to modify the application security policy without administrator
approval.

Users are application-defined, meaning each application can define its own
notion of principal and its own set of principals. One application’s users may
be distinct from another’s, or the user populations may overlap. An applica-
tion’s users may or may not correspond to human beings and typically won’t
correspond to the set of human beings allowed to log in to the system’s console.

By isolated, we mean that a process acting for one user cannot gain inappro-
priate access to other users’ data. Appropriate access is defined by an application
policy: the application defines which of its parts should be isolated and how.
The policy should also support flexible cross user sharing for data that need
not be isolated. Of course all users must trust some parts of the application,
such as the part that assigns users to client connections. Since bugs in this
trusted code could allow arbitrary inter-user exploits, we aim to minimize its
size.

The application defines the isolation policy, but the operating system en-
forces it. The OS should prevent processes from violating this policy whether
or not they are compromised. For example, processes should not be able to
launder data through other services and applications. As a result, isolation
policies must restrict information flow among processes that may be ignorant
of the policies. Unfortunately, systems that control information flow through
run-time checks can inappropriately divulge information when those checks
fail [Myers and Liskov 2000]; in effect, kernel data structures for tracking in-
formation flow provide a covert storage channel. This version of Asbestos aims
to eliminate storage channels that can be exploited without multiple processes
and limit channels that do. Related operating systems further reduce covert
channels [Zeldovich et al. 2006], although some channels, such as timing chan-
nels, will likely never be eliminated in any but the simplest information flow
systems and languages. Nevertheless, preventing overt leaks, as Asbestos al-
ready does, would block the breaches seen in the wild, and Asbestos labels can
already help prevent high-value secrets from reaching untrusted code through
any channels, overt or covert.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 11, Publication date: December 2007.



Labels and Event Processes in the Asbestos Operating System • 11:7

Fig. 1. Processes of the Asbestos Web server. Gray boxes are trusted in the context of this appli-
cation (only the network stack and kernel are trusted system-wide). Worker processes contain one
event process per user session. Striped boxes are semi-trusted; they hold privilege with respect to
a single user at a time.

In summary, Asbestos must support a variant of the ∗-property, which tran-
sitively isolates processes by tracking and limiting the flow of information.
Unprivileged applications define their own isolation policies and decide what
information requires isolation. Furthermore, OS mechanisms for labeling pro-
cesses must support highly concurrent server applications.

We show that Asbestos achieves this goal through the design and implemen-
tation of the Asbestos Web server, an improved version of the original OKWS
for Unix [Krohn 2004]. The server implements a Web site with multiple dy-
namic workers. Separate workers might support logging in, retrieving data,
and changing a password, for example. The ok-demux process analyzes incom-
ing connection requests and forwards them to the relevant worker. Each worker
is its own process and caches relevant user data. Caches for different users are
isolated from one another using labels and event processes. A production sys-
tem would additionally have a cache shared by all workers, and Asbestos could
without much trouble support a shared cache that isolated users. We also imple-
mented declassifier workers that can export user data to the public. Workers are
untrusted, meaning that a worker compromise cannot violate the user isolation
policy. Trusted components for this application include the ok-demux process,
the ok-dbproxy database interface, and an idd process that checks user pass-
words, as well as system components such as the network interface, IP stack, file
system, and kernel. However, the server’s trusted components are not trusted
by any other applications on the system: no part of the application runs with
root privilege (a concept that on Asbestos does not exist). Declassifier workers
are semi-trusted within the application, in that a compromised declassifier can
inappropriately leak the compromised user’s data but cannot gain access to
uncompromised users’ data. Figure 1 shows this server’s process architecture.

4. ASBESTOS OVERVIEW

The Asbestos operating system design features a small, nonpreemptive kernel
and single-threaded processes. Asbestos does not currently support symmetric
multiprocessors or shared memory. Processes communicate with one another
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using asynchronous message passing, somewhat as in microkernels such as
Mach; messages are queued in the kernel until they are received. The kernel
supports system calls for allocating, remapping, and freeing memory at partic-
ular virtual addresses, for creating and destroying processes, for sending and
receiving messages, for bootstrapping, and for debugging, in addition to calls
supporting tag, label, and event process functionality.

Each message is addressed to a single port. A process can create arbitrarily
many ports. Messages sent to a port are delivered to the single process with
receive rights for that port; this is initially the process that created the port,
but receive rights are transferable. The right to send to a port, however, is
determined through label checks, as described later.

Asbestos messaging is, unusually, unreliable: the send system call might re-
turn a success value even if the message cannot be delivered. There are several
reasons for this. For one, the kernel cannot tell whether a message is deliv-
erable until the instant that the receiving process tries to receive it, since in
the meantime process labels can change to prevent or allow delivery. For an-
other, reliable delivery notification would let a process leak information using
careful label changes, for example causing successful delivery to correspond to
1 bits and unsuccessful delivery to 0 bits. However, since only label checks and
resource exhaustion will cause dropped messages, careful label management—
such as our Web server’s—can make delivery reliable in practice.

Conventional mechanisms such as pipes and file descriptors are emulated
using messages sent to ports. To read a file, for example, the client sends a
READ message to the file server’s port and awaits the corresponding READ R
reply. The protocol messages were inspired by Plan 9’s 9P [Pike et al. 1995].

When asked to create a port, the kernel returns a new port with an unpre-
dictable name. This is necessary because the ability to create a port with a
specific name would be a covert channel. Communication is bootstrapped using
environment variables that specify port names for well-known services.

5. ASBESTOS LABELS

The heart of an information flow control system is its definition of the fun-
damental labeling primitive. Labels with limited flexibility, such as the Perl
programming language’s one-bit “taint tracking” or traditional MAC systems
with fixed category sets, aren’t well suited for constructing complex, application-
specific policies. Asbestos labels were designed to support complex policies with
a unified and self-contained mechanism. Asbestos labels combine the following
properties:

Practically Unlimited Information Flow Categories. Asbestos tracks infor-
mation flow in 261 independent categories called tags. Such a large space can
support a practically unlimited number of application-specific security policies,
so any process may allocate arbitrarily many tags. A given security policy may
require one, two, or many tags to implement.

Secrecy and Integrity in a Single Label. A label specifies a sensitivity level
for each tag. Normal sensitivity levels range from 0 to 3. Information can flow
freely from 0 up to 3; the reverse direction represents declassification and
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Fig. 2. Asbestos label sensitivity levels and common usage.

requires the intervention of a privileged process. Sensitivity levels let a sin-
gle label combine the functions of secrecy tracking and integrity protection.
Most labels, such as those for processes and files, start with an intermediate
level 1 for each tag. The lower level 0 is used in policies such as integrity track-
ing (“this object was modified only by high-integrity processes”), and the higher
levels 2 and 3 are used in policies such as taint tracking and protection of secret
information. Figure 2 summarizes the common use for each level.

Decentralized Declassification, Decentralized Privilege, and Unprivileged Se-
curity Policy Management. These concepts, which are the core of any decen-
tralized information flow control system, all amount to allowing a privileged
process to selectively reduce a label’s sensitivity for those tags for which it has
privilege. For instance, raising a label’s level for some tag from 1 to 2 requires
no privilege, but reducing that level from 2 to 1 would require the intervention
of a process with the corresponding privilege. In Asbestos, privilege is repre-
sented as the special sensitivity level �. A process with level � for some tag can
bypass the normal information flow control rules for that tag.

No Explicit Principals and a Single Tag Namespace. The Jif system in-
cludes a principal hierarchy distinct from labels, and Jif labels represent con-
straints among principals. Asbestos labels are self-contained: allocating a tag
confers privilege for that tag on the allocating process. Tags may correspond to
principals, and our Asbestos Web server uses some tags in this way, but per-
principal tags are just one of several usage patterns. Other system objects, such
as processes and IPC ports, also use the tag namespace, allowing processes to
manage their use with a single label mechanism.

To track information flow, the Asbestos operating system applies labels to
processes. The per-process mechanisms that use labels are:

Tracking and Clearance Labels. Each process has two labels, a tracking
label and a clearance label. The tracking label records the information flow a
process has observed so far; the clearance label bounds the maximum tracking
label a process is allowed to achieve. Thus, tracking and clearance labels behave
like IX’s current and maximum labels [McIlroy and Reeds 1992]. The initial
level for each tag in a clearance label is 2. This allows communication by default,
since the default tracking level, 1, is less. Level 3, which is used for high-secrecy
information, is higher than the default clearance, so processes cannot learn
secrets unless explicitly granted the necessary clearance.

Port Clearance. Each IPC port has a clearance label that further re-
stricts the messages delivered to that port. Port clearance labels let processes
limit their possible contamination and support security policies resembling
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capabilities, where a process cannot send a message to another process’s pro-
tected port until it is explicitly granted that right.

Discretionary Labels. Where conventional information flow systems simply
track information flow, Asbestos applications can use labels as an active and
discretionary tool. Four optional discretionary labels may be specified when
sending a message. These labels let a process (1) send with a higher label than
its true label (for example, when a privileged process sends a message that it
wishes to mark secret); grant privilege by (2) reducing the receiver’s tracking la-
bel or (3) raising its clearance label; and (4) pass to the receiver a kernel-verified
upper bound of the sender’s tracking label, letting a process demonstrate its
tracking label state while avoiding ambient authority.

The remainder of this section describes Asbestos labels in more detail. We
present notation, IPC rules, and an array of examples.

5.1 Label Notation

An Asbestos label defines a level for each of 261 possible tags. Conceptually, a
label is a function from tags to levels. In practice, each label maps most tags to a
single level called that label’s default level; for instance, in tracking labels, most
tags map to level 1. We write a label using set-like notation: a comma-separated
list of tag/level pairs followed by the default level. For example, L = {v 0, w 3, 1}
assigns level 0 to tag v, level 3 to tag w, and level 1 to all other tags:

L(t) =

⎧⎪⎨
⎪⎩

0 if t = v,
3 if t = w,
1 otherwise.

A partial order on labels determines whether one label dominates another.
In this partial order, LA is less than or equal to LB if for each tag, the level in
LA is less than or equal to the level for the same tag in LB:

LA � LB iff ∀t : LA(t) ≤ LB(t).

If one tag’s level is less in LA than in LB and another tag’s level is greater in
LA than in LB, then the labels are incomparable: LA �� LB and LB �� LA. The
lowest possible label, ⊥ = {�}, is less than or equal to every Asbestos label in
the partial order; the highest possible label, 	 = {3}, is greater than or equal
to every label.

The least upper bound of two labels, written LA 
 LB, is the smallest label
with both LA � LA 
 LB and LB � LA 
 LB. (In the context of classical informa-
tion flow, this is the lowest label that combines the information flow constraints
of both LA and LB.) The least upper bound operator works by taking for each
tag the highest corresponding level in either label. For example,

{v 0, w 0, x 3, 1} 
 {v 0, 1} = {v 0, x 3, 1}.
This is clearer when we explicitly write out all tags mentioned in either label:

{v 0, w 0, x 3, 1} 
 {v 0, w 1, x 1, 1} = {v 0, w 1, x 3, 1}.
ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 11, Publication date: December 2007.
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Fig. 3. Notation and description for Asbestos system and discretionary labels.

In notation,

(LA 
 LB) (t) =
{

LA(t) if LA(t) ≥ LB(t),
LB(t) otherwise.

Similarly, the greatest lower bound operator � is defined as

(LA � LB) (t) =
{

LA(t) if LA(t) ≤ LB(t),
LB(t) otherwise.

Thus, Asbestos labels form a lattice [Denning 1976].
Sensitivity levels are related as � < 0 < 1 < 2 < 3, which represents privi-

lege as a sort of “super-high integrity.” However, unlike true integrity, receiving
a message from an unprivileged process should not eliminate privilege. We ex-
plicitly represent the preservation of privilege by adding it back after a message
is received. This makes use of a privilege preservation operator, written LA�L�

B,
where

(LA � L�
B) (t) =

{
� if LB(t) = �,
LA(t) otherwise.

5.2 System Labels and IPC

We now describe the information flow rules that control process intercommu-
nication. In the rules, process P ’s tracking and clearance labels are denoted
TP and CP , respectively. Port p’s port clearance label is written PCp. The four
discretionary labels specified by a process when sending a message are T+, T−,
C+, and V; their functions are summarized in Figure 3 and described in more
depth in the following.

The core rule for process communication is that process Q can receive a
message from process P only if Q is cleared to see any information that P may
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have seen—or, in terms of labels,

TP � CQ . (1)

On receiving the message, the kernel must update Q ’s tracking label to account
for the message. The message is conservatively assumed to carry all of the
information that P has seen, so the message carries P ’s tracking label, and the
kernel sets

TQ ← TP 
 TQ . (2)

These rules are the well-known basis of any classical information flow system.
Asbestos privilege, port clearance, and discretionary labels expand the

equations, but introduce necessary flexibility. We list these changes and de-
scribe their effects on the information flow rules, then present the complete
rules.

Preserving Privilege. The receiver’s privilege is preserved after it receives
a message. This changes the tracking label update to TQ ← (TP 
 TQ ) � T �

Q .
Increasing the Tracking Label. The sending process can raise a message’s

label beyond TP , the process’s tracking label, by supplying the T+ discretionary
label at send time. The kernel treats the message’s tracking label as TP 
 T+.
The default T+ label is ⊥, which does nothing since L 
 ⊥ = L for any L.
Increasing the tracking label is particularly important for trusted server pro-
cesses that handle many classes of differently labeled information, such as
file servers and databases. Although such processes will hold privilege for
many tags, each message they send should carry a label appropriate to the
message data. T+ lets them increase the message label to an appropriate
value.

Declassification and Granting Privilege. The T− discretionary label lets the
sending process grant some of its privilege to the receiver, or use its privilege
to declassify the receiver. In particular, T− lowers Q ’s tracking label when
the message is received. For instance, to declassify Q with respect to a tag
t, P might set T− = {t 1, 3}; this will reduce TQ (t) to the default of 1 even
if Q had previously observed high-secrecy t data. To grant Q privilege with
respect to t, P might set T− = {t �, 3}. Since these operations change tracking
labels contrary to the classical information flow rules, they require privilege
to exercise. Specifically, P must have privilege for t in order to declassify with
respect to t: if T−(t) �= 3, then TP (t) must equal �. Attempting to declassify
without the necessary privilege is an error and causes the send operation to fail.
This failure is safely reported to the sending process: when a failure involves
only the sender’s own labels, reporting an error does not inappropriately expose
information.

Granting Clearance. The C+ discretionary label grants a different kind of
privilege, namely the right to observe secret data. C+ raises Q ’s clearance label
as the message is received, allowing a corresponding increase of Q ’s track-
ing label as this or a later message is received. For instance, to let Q ob-
serve high-secrecy t data, P might set C+ = {t 3, �}; this will raise CQ (t) to 3.
Again, since this operation acts contrary to the classical information flow rules,
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it requires privilege to exercise. Specifically, when P sends a message with
C+(t) �= �, it must have privilege for t. Only a process can reduce its own clear-
ance label. A process may simultaneously grant clearance and increase the
receiver’s tracking label for a tag t by setting T+ = C+ = {t 3, �}.

Port Clearance. Port clearance labels let a process declare different infor-
mation flow characteristics for each of its communication ports. In particular, a
process can restrict which processes can send to a port. Each port q has a clear-
ance label PCq that modifies the clearance check. Q can receive a message sent
by P to port q only if the process clearance CQ and the port clearance PCq both
allow it:

TP 
 T+ � CQ and TP 
 T+ � PCq

or, equivalently,

TP 
 T+ � CQ � PCq .

As an important example, port clearance labels can provide capability-like
semantics. If port p’s clearance label is PCp = {p �, 3}, then only processes
with privilege for p can send a message to p. Such processes can use T−

to confer that privilege on others. Thus, when PCp = {p �, 3}, having priv-
ilege for p resembles owning a capability that allows sending messages to
port p. Since a port clearance label only applies to messages sent to that
port, a process can distribute multiple independent “send capabilities,” one per
port.

Port clearance labels also restrict how far a process’s clearance may be raised.
In particular, a message sent to port q cannot use C+ to raise CQ above PCq .
A message that attempts to raise CQ above this ceiling will not be received.

Verified Upper Bound. Finally, the discretionary label V is reported to the
receiver as a verified upper bound on the sending process’s tracking label. The
kernel checks that TP � V (the send attempt fails if it is not), then makes
V available to the receiving process. For example, if V = {t �, 3}, then the re-
ceiver can verify that P definitely has privilege for tag t. An explicit verified
upper bound lets a process declare exactly which privilege it intends to exercise,
avoiding, for example, the “confused deputy” problem [Hardy 1988].

A message that cannot be delivered because of a label failure is simply
dropped. Usually the sender is not even informed of the failure, since failure
notification would act as a covert channel. However, if the failure involves only
the sender’s process and discretionary labels—for example, the sender tried to
grant privilege it does not possess—then it is safe to report an error message,
and Asbestos does so.

The complete Asbestos label rules are presented in Figure 4. The Asbestos
rule corresponding to TP � CQ is

TP 
 T+ � (CQ 
 C+) � PCp. (3)

The differences are as follows.
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Fig. 4. Label operations associated with three Asbestos system calls. P is the calling process.

TP � CQ Core information flow rule
TP 
 T+ � CQ The T+ discretionary label increases the mes-

sage’s tracking label
TP 
 T+ � CQ 
 C+ The C+ discretionary label grants clearance to

the receiver, increasing its clearance label
TP 
 T+ � (CQ 
 C+) � PCp The port clearance label applies additional clear-

ance restrictions

The Asbestos rule corresponding to TQ ← TP 
 TQ is

TQ ← ((TP 
 T+ 
 TQ ) � T−) � T �
Q . (4)

The differences are as follows.

TQ ← TP 
 TQ Core information flow rule
TQ ← TP 
 T+ 
 TQ The T+ discretionary label increases the

message’s tracking label
TQ ← (TP 
 T+ 
 TQ ) � T− The T− discretionary label grants privi-

lege to the receiver, lowering its tracking
label

TQ ← ((TP 
 T+ 
 TQ ) � T−) � T �
Q Q ’s privilege is preserved by restoring �

levels to its tracking label

Figure 4 also presents the label rules for two operations involving ports,
namely, creating a new port and changing a port’s label. Processes supply an
initial port label when creating a port; most often this is 	 = {3}, which adds
no restrictions relative to the process’s clearance label, but it can be {2} or
anything else. One wrinkle is that when a process supplies the initial port
clearance label L, it has no way of defining a specific level for the port’s tag,
which has not yet been assigned. Therefore, the kernel sets the new port’s
clearance to a more restrictive value L � {p 0, 3}, where p is the new port.
Since initially PCp(p) ≤ 0 and any other process X has TX (p) ≥ 1 (the default
send level), no other process can send to p until P explicitly grants access.
Processes can easily remove this restriction since only the initial port label is
modified.
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5.3 IPC Examples

We now work through several examples to demonstrate the different features
of the IPC mechanism.

Examples A, B, and C demonstrate the core rule for process communication,
Equation (3). In Example A, all tags have level 1 in TP and level 2 in CQ ; thus,
TP � CQ and the message can be delivered. In Example B TP � CQ still holds
(t: � < 2, u: 0 < 2, all others: 1 < 2) so the message is delivered. However, in
Example C, tag t has level 3 in TP but the lower level 2 in CQ . Intuitively, Q
doesn’t have the clearance required to receive data labeled t 3; mathematically,
TP (t) �≤ CQ (t), so TP �� CQ and the message cannot be delivered. The kernel
will silently drop the message when Q attempts to receive it. (The message
shouldn’t be dropped at send time because Q might change its clearance after
the message is sent, but before attempting to receive.)

TP CQ Old TQ New TQ Result
A. {1} {2} {1} {1} Success
B. {t �, u 0, 1} {2} {1} {1} Success
C. {t 3, 1} {2} {1} — Silent failure: TP (t) = 3 > CQ (t) = 2, so

TP �� CQ

In Examples D and E Equation (3) allows message delivery, but further label
operations are necessary because the sender’s tracking label is not less than
or equal to the receiver’s tracking label. When the message is received, the
receiver’s labels are updated according to Equation (4) to account for the new
information; specifically, the receiver’s tracking label is increased to the least
upper bound of the sender’s tracking label. However, as Example F shows,
privilege is preserved.

TP CQ Old TQ New TQ Result
D. {t 3, 1} {t 3, 2} {1} {t 3, 1} Success
E. {t 2, 1} {2} {1} {t 2, 1} Success
F. {t 2, 1} {2} {t �, 1} {t �, 1} Success, but privilege is preserved

The remaining examples demonstrate how the discretionary labels interact
with message delivery. In Examples G and H, the T+ label increases a message’s
effective tracking label: the kernel behaves as if the sending process’s tracking
label were TP 
 T+. The labels in Examples G and H have the same effect
as those in Examples C and D, respectively, although in these examples the
sending process’s tracking label is the default {1}.

TP T+ CQ Old TQ New TQ Result
G. {1} {t 3, �} {2} {1} — Silent failure: T+(t) = 3 > CQ (t) = 2
H. {1} {t 3, �} {t 3, 2} {1} {t 3, 1} Success

Examples I, J, and K show how T− lets the sender declassify the destina-
tion’s tracking label by reducing its levels for some tags. As demonstrated by
Example I, the kernel requires that the sender have privilege for each tag it
attempts to declassify. Examples J and K show how T− supports both conven-
tional declassification—a tag’s level is reduced to the default—and the granting
of privilege.
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TP T− CQ Old TQ New TQ Result
I. {1} {t 0, 3} {2} {1} — Error: T−(t) < 3, but TP (t) �= �

J. {t �, 1} {t 1, 3} {t 3, 2} {t 3, 1} {1} Success with declassification
K. {t �, 1} {t �, 3} {2} {1} {t �, 1} Success with granting privilege

Similarly, C+ lets the sender grant clearance to view secret data by in-
creasing the receiver’s clearance label. Again, privilege is required to use C+

(Example L).

TP C+ CQ Old TQ New TQ Result
L. {1} {t 3, �} {2} {1} — Error: C+(t) > �, but TP (t) �= �

M. {t �, 1} {t 3, �} {2} {1} {1} Success with granting clearance:
new CQ = {t 3, 2}

Finally, Examples N, O, and P demonstrate the use of V, the kernel-verified
upper bound label passed to the receiver. In Example N, the sender is prevented
from claiming an upper bound lower than its actual tracking label. In Exam-
ple O, the sender informs the receiver of its precise tracking label; in Example P,
the sender shows that no tags in its tracking label have level 3, but does not
reveal that label’s precise contents.

TP V CQ Old TQ New TQ Result
N. {1} {t 0, 1} {2} {1} — Error: TP �� V
O. {t 2, 1} {t 2, 1} {2} {1} {t 2, 1} Success
P. {t 2, 1} {2} {2} {1} {t 2, 1} Success (as long as V is accurate, it need not

be precise)

5.4 Label Idioms

The Asbestos label mechanism can implement many different policies, but most
policies will generally be built from the handful of idioms we detail below.

Secrecy. A process that wants to protect a piece of information from unau-
thorized processes can create a new tag t and use T+ = C+ = {t 3, �} when
sending that information to other processes. These discretionary labels simul-
taneously mark the message as secret and grant other processes the ability to
receive the secret. Specifically, any process that sees the information will have
its tracking label updated to level 3 for tag t. However, since these processes
lack the necessary privilege, they cannot send the secret beyond those processes
cleared by the secret’s “owner.” The owner process could grant clearance to re-
ceive the secret without sending the secret by only using C+ = {t 3, �}. Level 3
prevents all processes except those explicitly granted clearance from viewing
the secret information. When using this idiom, we often refer to processes that
have seen the secret as contaminated with respect to the corresponding tag.

Multilevel Security. An extension of the secrecy idiom can build a policy
with different levels of secrecy, similar to multilevel security (MLS). A pol-
icy where each security category has levels of unclassified, confidential, secret,
and top-secret requires three tags per category. For example, nc might represent
nuclear-confidential information, ns nuclear-secret information, and nt nuclear-
top-secret information. The unclassified state is represented by a tracking label
with the default level 1 for all three tags. The tracking label of a process that
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has seen nuclear-classified information would contain nc 3, which in turn re-
quires clearance of nc 3. Secret and top-secret information could be expressed
with ns 3 and nt 3, respectively, but the implied hierarchy among MLS security
levels is better modeled by also marking secret data as classified and top-secret
data as both secret and classified. This leads to labels containing ns 3, nc 3 and
nt 3, ns 3, nc 3, respectively. The privilege to declassify nuclear-top-secret data to
the secret level is represented by a tracking label containing nt �, and similarly
for other declassification privileges.

Integrity. In an integrity policy, the application wants to know that all in-
formation used in a computation came from sources that are considered high
integrity. For this policy, we consider a source (a process or file) as high in-
tegrity for a tag if its tracking label has that tag at level 0. After allocating
tag t from the kernel, a process can mark other processes as high integrity for
that tag using T− = {t 0, 3}. Any communication thereafter will update this
integrity appropriately. For instance, if two high-integrity processes P and Q
communicate, then both will remain high-integrity since (TP 
 TQ ) (t) = 0.
However, if P receives a message from a process without high integrity for t,
then TP (t) will raise to at least level 1 by Equation (4), causing P to lose its
integrity.

Taint. Perl and some other languages support taint tracking, where se-
lected functions are not allowed to operate on “tainted” data (that is, data origi-
nating from an untrusted source). Asbestos can enforce this idiom at the process
level. For example, the network daemon could mark all incoming data with a
network taint tag, and other sensitive processes might refuse to accept messages
with this taint tag. To mark data as tainted in a particular category, a process
creates a new tag t for that category of taint, then uses T+ = {t 2, �} when
sending that information. Most processes will be able to receive the message
because the default clearance level is 2. However, process that are not willing to
receive that taint can lower their clearance label to {t 1, 2}. This policy is made
possible by the different default levels for the tracking and clearance labels.
Without different default levels, this policy would require system-wide label
changes to add t to most processes’ clearance labels.

Capabilities. With clearance and port clearance labels, a process P can im-
plement a capability-like communication pattern in which the ability to send
messages to P is distributed to other processes as an explicit right. P requests
a tag t from the kernel, then reduces its clearance label to level � for t. Only
processes with t � in their tracking label satisfy Equation (3) and thus may send
messages to P . The T− discretionary label can be used to send the capability to
other processes. Alternately, P may modify port clearance labels to implement
capability-like semantics with per-port granularity. This idiom doesn’t directly
support capability revocation, but Asbestos can support revocation using com-
mon patterns such as object capabilities.

Isolation. This idiom isolates a process P behind a proxy process Q , which
acts as a sort of firewall: the isolated process P can communicate with no other
process but Q , while Q has no restrictions on its communication. Isolation
is implemented as a simple combination of the secrecy and capability idioms
and declassification. Q implements the isolation idiom by creating two tags,
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t and u. This gives Q privilege for the tags. Q adds t 3 to its clearance label,
allowing it to receive secret t data, and starts up P with tracking label TP =
{t 3, u 0, 1} and clearance label CP = {t 3, u 0, 2}. The t components prevent P
from sending messages to any process other than Q , while the u components
prevent P from receiving messages from any process but Q . (Strictly speaking,
of course, P can always communicate with itself and with other processes with
identical labels, but only P and Q are able to create such processes.) Only Q
has the ability to change P ’s labels in a way that will circumvent the isolation
policy.

5.5 Discussion

Levels. Asbestos’s five label levels (�, 0, 1, 2, 3) are required to support priv-
ilege, integrity, taint tracking, and secrecy within the framework of one uni-
fied tracking label per process. Since privilege (�) is handled differently by the
update rules, it must be represented by a unique level. The secrecy and in-
tegrity idioms require at least one level below (0) and one level above (3) the
tracking label and clearance label default levels, respectively. Finally, support-
ing the taint idiom requires different default levels for tracking labels (1) and
clearance labels (2). While additional levels might increase expressivity, for in-
stance by directly supporting additional hierarchical security classifications in
the multi-level security idiom, we have preferred to keep the base mechanism
relatively simple and implement such policies with multiple tags.

Tag Names. Asbestos security requires that when a process creates a new
tag, that process is initially the only process in the system with privilege for that
tag. This implies that tags must be unique since boot. Also, tag names must not
follow a predictable order, since such an order could be used as a covert channel
to leak information between processes. To ensure that tags are not reused and
that their names follow no discernible pattern, the kernel generates tags by
encrypting a counter with a 61-bit block cipher derived from Blowfish [Schneier
1993]. The cipher is a one-to-one mapping: as long as the counter does not wrap,
the resulting tag values will be unique. In the current implementation, a process
allocating tags as fast as possible would take over 500,000 years to allocate them
all. Nevertheless, the allocation procedure ensures system security by skipping
tags that are in use at allocation time.

Privilege. Asbestos privilege is decentralized in that the only way to obtain
privilege for a particular tag is by receiving it from a process that already has
that privilege. Therefore, there is no inherently powerful “root” user, though by
convention users may grant most privilege to some administrator.

The label rules generally exercise privilege implicitly. For instance, receiv-
ing a message preserves process privilege with no explicit process intervention.
However, one aspect of Asbestos privilege requires explicit process action: for a
sending process to prove its privilege to a receiving process, it must explicitly
indicate what privilege it intends to exercise with the V discretionary label.
An alternative design might eliminate V and supply message recipients with
a copy of the sender’s tracking label, in effect conveying all of a process’s cre-
dentials with every message it sends. However, such designs lead to security
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problems in which an attacker can trick a process into exercising unintended
privileges [Hardy 1988].

5.6 Implementation

Asbestos applications represent labels, such as the discretionary labels pro-
vided when sending a message, using a default level plus an array of tag-level
pairs. A 64-bit number represents a label entry: the upper 61 bits are the tag,
the lower 3 bits encode its level in that label. A library provides a basic imple-
mentation of label operations for application use; to get reasonable run time for
label operations, it stores the array of tags in sorted order.

The kernel represents each active tag with an 84-byte data structure called
a tagnode. For ports, this structure includes the port clearance label and a ref-
erence to the process with receive rights. A hash table maps tags to tagnodes.
Tagnodes are reference counted; when all kernel references to a tagnode disap-
pear, the kernel may reuse its memory.

Our initial work represented labels in the kernel with a sorted array of
pairs of tagnode pointers and levels [Efstathopoulos et al. 2005], somewhat
like our current application implementation. Unfortunately, while applications
compute and operate on labels relatively infrequently, and discretionary la-
bels tend to be quite small, the Asbestos kernel performs several label oper-
ations per IPC and processes with privilege for many different tags will have
large tracking labels. The privileged components in our Web server have privi-
lege for each application user; we measure the Web server with as many as
145,000 active users, which gives some processes as many as 300,000 tags
(two tags per user) at a nondefault level. A simple sorted array implemen-
tation imposes label operation costs that always scale linearly with the num-
ber of tags in the largest label, and these costs quickly became a performance
bottleneck.

In the worst case, any label operation can have overhead linear in the
size of the input labels. (For example, consider L = {t0 2, t2 2, . . . , t2i 2, 0} and
L′ = {t1 3, t3 3, . . . , t2i+1 3, 1}; the least upper bound operation L 
 L′ requires
the construction of a label with 2i +2 components {t0 2, t1 3, . . . , t2i 2, t2i+1 3, 1}.)
However, the label operations performed on behalf of most Asbestos applica-
tions fit into categories amenable to optimization. In the Asbestos Web server,
we observe that large labels consist mainly of privilege, with at most a handful
of non-privileged tags. Label comparison operations usually succeed: when they
fail a message is silently dropped, which indicates either an exploit attempt or
an application bug—both, we hope, rare. Label update operations usually do not
increase the receiving process’s tracking label. However, tracking labels change
frequently, usually to add or remove privilege for connection tags as connections
enter and leave the system. Furthermore, the use of discretionary labels creates
many short-lived labels that differ only slightly from longer-lived tracking and
clearance labels. These qualities seem general enough to be common to other
challenging applications, not just Web serving.

We considered several strategies for improving label performance.
Hierarchical privilege groups could shrink the size of privileged processes’
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Fig. 5. Labels are AVL trees. The label rooted at node a references nodes a through e; nodes x and
y belong to other labels. Nodes c, d, e, and y are leaf nodes containing sorted chunks of tagnode/level
pairs. Nodes b and e are referenced from other labels and therefore have a reference count of two.
If the label rooted at a is L, then a comparison operation such as L � L′ can skip nodes c and
e: all tags in these nodes have level �, which is less than or equal to any possible level. In larger
labels, entire subtrees can often be skipped, leading to logarithmic performance scaling for typical
operations.

labels, letting one “superprivilege” stand in for 300,000 separate tags. Such
a design would complicate individual privilege comparisons. We also wanted to
avoid privilege groups, worrying that users would fix application bugs by giving
processes the group equivalent of “root” privilege. Another potential strategy,
namely caching the results of past label operations, would perform poorly due
to the high frequency of label changes: most cached results would quickly be
invalidated.

Our solution is a balanced tree implementation. This gives label operations
on typical large labels costs logarithmic in the size of the inputs and the memory
cost of temporary labels is reduced by allowing labels to share substructure. The
tree implementation allows us to evaluate labels an order of magnitude larger
than our previous work. In our Asbestos Web server, the new implementation
with 300,000-tag labels performs better than the original sorted array imple-
mentation at almost any size.

Asbestos labels are AVL trees whose leaves are sorted chunks of tagnode
pointer and level pairs (Figure 5). We ensure that tagnodes are 8-byte aligned,
allowing us to store a tagnode pointer and a level in a single 32-bit slot. Labels
are reference counted and updated copy-on-write, so multiple entities can share
label memory when appropriate. Additionally, because the only state that an
AVL tree needs in each node is the node’s height in the tree, internal and leaf
nodes can be shared among labels. Empirically, we had the best performance
when storing a maximum of 24 label components per chunk.

Each tree node contains its height in the tree, to facilitate balancing; the
range of tagnode pointers in the subtree, to enable subtree comparisons; the
set of levels in the subtree; and other data structure maintenance fields. The
set of levels helps optimize operations on labels that mostly contain privilege.
For example, Figure 6 shows a pseudocode sketch for comparing two labels with
the � operator. Ignoring default levels, if all of the a node’s levels are less than
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Fig. 6. Pseudocode for checking whether a � b. Entire subtree comparisons can be skipped if all
of the a subtree’s levels are less than any of the b subtree’s levels. Some computations with default
levels are omitted.

any of the b node’s levels, then a � b. In the common case where a sending
process’s label consists mostly of privileged tags, this allows the comparison
operator to skip the vast majority of a label’s nodes.

6. LABEL PERSISTENCE

Any general purpose operating system must support persistent storage. In sys-
tems that support information flow control, the storage system must uphold
the constraints imposed by the configuration of labels in place when the data
is stored. However, stored data is usually accessed after the system label state
has changed, and often after it has been completely cleared by one or more
reboots. For example, if a file contains data that is marked secret with a label
of {t 3, 1}, an application must have the appropriate clearance to read the data.
After a reboot, there are no processes that have or can acquire that privilege.
The storage system itself must thus preserve the privilege needed to access the
data it stores.

Our file system semantics resemble those of HiStar [Zeldovich et al. 2006]
except for the way privilege is stored. HiStar and other systems such as
EROS [Shapiro and Hardy 2002] preserve privilege by introducing a single-level
store. Rebooting returns the system to a checkpointed state, and a process’s tags
and capabilities are stored along with its virtual memory. One consequence of
this design is that privilege is tied to process lifetime: after the last process
with privilege for a tag t dies, there is no way to recover that privilege.

Asbestos introduces an alternate technique called pickling that preserves
privilege within a more conventional stable storage design. A pickle is a special
type of file that stores privilege for a single tag. A special unpickle operation
allows a process to recover privilege for the tag if various constraints are sat-
isfied. Pickles simplify the process of recovering privilege, whether it be after
application restart or reboot, and fit well into existing file system designs. The
Asbestos file server preserves privilege and upholds information flow invari-
ants while avoiding covert channels through file metadata such as names and
labels. While these properties might be easy to provide if the file server could
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Fig. 7. File and directory labels. User Alice owns a publicly readable directory /alice, a publicly
readable file /alice/blog.txt, and a private file /alice/diary.txt. Only processes with privilege tag
a � may modify her files.

arbitrarily create privilege and allocate tags with specific values, for higher
assurance, the Asbestos file server operates within the same rules as ordinary
Asbestos processes.

6.1 File System Semantics

The label rules for file operations are similar to the label rules for processes.
Each file f in the Asbestos file system has a tracking label T f and a clearance
label Cf . The tracking label resembles a process’s tracking label. It records
the information flow corresponding to the file’s contents; when a process reads
from f , the file server’s reply sets T+ = T f to preserve information flow con-
straints. The clearance label constrains processes attempting to write to the
file. A process P with tracking label TP may only write to a file f if TP � C f .
For example, in Figure 7, if user Alice has privilege for tag a and creates a file
blog.txt with clearance label Cblog.txt = {a �, 1}, then the only processes that may
modify blog.txt are processes to which Alice grants the privilege a � (an instance
of the capability idiom).

Directories have tracking and clearance labels exactly like regular files. If
process P lists directory d , its tracking label TP will be updated to reflect the
Td label. Operations that modify a directory, such as creating or removing files,
are treated as writes to the directory. For example, if a process P is to create a
file in directory d , its tracking label TP must obey TP � Cd .

Unlike process labels, file and directory labels are immutable; a file meant
to hold a secret must be created with an appropriate label. The file server
requires processes to supply the immutable tracking and clearance labels at file
creation time. It also checks some constraints on those initial labels. The new
file’s tracking label must be at least as high as the tracking label of the creating
process (TP � T f ), maintaining valid information flow. Furthermore, the file’s
clearance label must be less than or equal to its tracking label (C f � T f ).
This is the reverse of the rule for processes due to the different meaning of
clearance in the file context. The immutable label design, which was influenced
by HiStar, simplifies certain information flow guarantees. Designs that allow
a file’s tracking label to change are either more complex or leak information.
Although immutable labels may appear cumbersome, in practice it has not
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Fig. 8. File operations on file f in directory d by process P .

been difficult to determine a file’s intended label at creation time. Figure 8
summarizes the label rules for file system operations.

The immutability of file labels and the semantics of the create operation allow
directory read operations to return most metadata, including file names, file
labels, and inode numbers. This is possible because directory read operations
do not return state that can be affected by processes with tracking labels higher
than the directory’s. By definition, a process P can create a file in directory d
only if TP � Cd and Cd � Td ; thus the file name and file labels were specified by,
and are no more secret than, a process with TP � Td . The ability to freely read
a file’s label without being influenced by it allows a process to safely determine
how its labels would change as a result of reading a file. Operations that return
mutable file attributes, such as file size, must update the process’s tracking
label with the file’s tracking label to maintain information flow constraints,
since these attributes can be modified by processes that have too many secrets
to write to the directory. For example, a directory with Cd = {1} might contain a
file with T f = {t 3, 1}. A process with TP = T f could not write to the directory,
but could write to the file, changing its size.

6.2 Preserving Privilege with Pickles

In order to preserve privilege, the Asbestos file server must serialize labels in a
way that allows it to find equivalent tags later, possibly after a reboot, despite
the complication that tag names are nonpersistent and randomly generated.
Therefore, the Asbestos file system directly expresses tag serialization with
pickle files. When unpickling, depending on the parameters used to create a
pickle file, a process may gain some amount of privilege for a pickle’s tag via
the unpickle operation.

To create a pickle file for tag t, process P sends a request to the file system
containing t, an optional password, and the maximum privilege the file system
should grant as the result of an unpickle operation. This maximum privilege is
specified as a minimum level �. If a password is specified during pickling, the
same password must be used when obtaining privilege by unpickling. Since a
pickle is a file, P also specifies a pathname and file labels so the file server can
perform all the normal file creation checks. The file server also confirms that P
has privilege for t and that the file server itself has been granted privilege for
t. (In order to implement pickles and to correctly express file information flow,
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Fig. 9. File server architecture. Each client talks to a unique file server event process. The
event processes can access pages from the buffer cache as well as modify the pickle/tag mapping
table.

the file server must have privilege for all serialized tags.) Once these checks
succeed, the file system can create the pickle file.

There are two kinds of unpickle operations. Unpickling with a level of 3
requests no additional privilege, so the file server simply replies with the value
of the tag for that pickle; the correct password is not required. Unpickling with
a different level acquires a pickle’s stored privilege. A process Q making such
a request supplies the pathname of the pickle, the password (if any), and the
desired privilege level, which must be greater than or equal to the level stored in
the pickle. The file system then checks whether Q passes the normal file system
checks for reading and writing the pickle file. For pickle files, write permission
has been repurposed to indicate who can extract privilege. If Q passes these
checks, the file system tells Q the tag value of the pickle and uses T− to grant
privilege for the tag at the desired level.

The file server can recover privilege after a reboot by simply creating a new
tag for each pickle. Although the new tag values will likely not equal the values
from before the reboot, applications will not be able to tell the difference as long
as they store references to pickle files instead of storing raw tag values. Within
a boot, however, the file system must remember the specific tag mapped to each
pickle.

6.3 File Server Implementation

The Asbestos storage system is composed of a user-level file server and two
kernel components, a buffer cache and a pickle/tag mapping table (Figure 9).
Processes access the file system by communicating with the file server, which
accesses the disk, buffer cache, and mapping table through special kernel
interfaces.

To write data to the disk, the file server first makes sure all the contamina-
tion, taint, and integrity associated with the data has already been serialized:
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that is, all tags at a level other than 1 have pickle equivalents. This ensures
that the file server can use the data it is about to write in a consistent way after
a reboot.

The file server has read and write privileges to the raw disk blocks, so it is
effectively trusted with all data in the file system and all pickled tags. However,
the file server is not completely privileged and is not trusted with any tags or
data outside the file system. Specifically, the kernel requires that the file server’s
tracking label be less than or equal to {1} when writing to the disk. This means
that the file server must have privilege for all tags on any data going to disk.
As a consequence, processes may protect especially secret data from ever being
written to disk using a tag that is never granted to the file server. In essence,
the file system is only as privileged as it is trusted by the processes that store
data in it. This differs from HiStar’s single-level-store design, in which the
equivalent of the file system is trusted for all tags.

The file server allows arbitrarily labeled processes to read from the file sys-
tem, although they cannot write to it. This increases flexibility. The file server
avoids contamination from these tainted clients by isolating their interactions
using event processes (Section 7). However, in order to provide a consistent view
of the file system, the file server must coordinate these event processes’ states.
This coordination is made safe from storage channels via two trusted kernel
components, a buffer cache and a pickle/tag mapping table. These trusted com-
ponents are relatively simple (about a quarter the code length of the untrusted
components). They are accessible only to processes with privilege for a special
tag, which the kernel initially grants to the file server. The buffer cache follows
a conventional design. Only processes with tracking label at or below {1} can
write to the buffer cache, but tainted processes can read from the buffer cache
since reading doesn’t alter the system in a way observable from other processes
(except by timing). When a page is written to the buffer cache, the kernel noti-
fies any other process that had previously read the page in order to maintain
consistency. The pickle/tag mapping table maintains the definitive correspon-
dence between pickles and tags, and is an instance of a general tag mapping
interface available for other uses. The mapping table’s interface was designed
to be free of covert channels. For example, the table maps tags to pickles via
the single request “give me a tag for this pickle value.” This may create a new
mapping (and a new tag) or return an existing mapping, but because tag values
are random, there is no way to determine which of the two cases has occurred
and therefore no way for the event process to use the mechanism to transmit
information. Interfaces such as “check whether this pickle has a tag” would
expose information and are therefore not provided.

6.4 Discussion

In order to obtain privilege from a pickle, the process must be able to read and
write the pickle as well as read the directory structure down to where the pickle
is stored. These requirements can effectively restrict the tracking and clearance
labels of any process acquiring the stored privilege. For example, if TP includes

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 11, Publication date: December 2007.



11:26 • S. VanDeBogart et al.

t �, u �, then P can pickle u with Cu = {t �, 3}. This means that another process
Q may only acquire privilege for u if it has TQ (t) = �, another instance of the
capability idiom.

Password protected pickles enable applications to construct their own priv-
ilege hierarchies. In order to create an independent privilege hierarchy, an
application would first create a password protected pickle with an empty track-
ing and clearance label to root its hierarchy. It would then create a directory
and pickle tree, protected by the first pickle, to match the privilege hierarchy it
desires. After a system reboot, the application can recover the entire privilege
hierarchy by unpickling the root pickle and using it to unpickle the subsequent
levels of the hierarchy.

7. EVENT PROCESSES

Asbestos application designers must manage how information flows through
their applications. Server-like processes that handle multiple users’ private
data present a challenging information flow pattern; absent any active man-
agement, they would accumulate, and therefore spread, the tags used to pro-
tect users’ privacy as they handled different users’ requests. The standard
approaches to managing this pattern of information flow have several disad-
vantages. One standard approach would isolate users by forking the server
on a per-user or per-request basis. Unfortunately, this could be resource in-
tensive, requiring hundreds or thousands of page tables, labels, and so forth,
and would require that the initial request for each flow of communication (the
one that causes the server to fork) be sent with no tags protecting it, reveal-
ing at least when and how many requests were made to the server. Another
direct approach is to have the server cleanse itself of tags after handling each
request. With Asbestos labels, there are two ways to remove tags: have privi-
lege for the tags so the contamination doesn’t stick in the first place, or ask a
privileged process to declassify the server process. Both of these options leave
the process over-trusted (either completely privileged with respect to the data,
or trusted to “forget” data) and therefore vulnerable to disclosing many users’
data. To handle the information flow pattern found in server-like processes,
we need a mechanism that provides data isolation at an acceptable resource
cost.

Examining how servers use the data that needs to be isolated helped us
develop a mechanism that isolates different flows of communication. Many ef-
ficient servers [Pai et al. 1999; von Behren et al. 2003; Krohn 2004] are driven
by a simple dispatch loop:

while (1) {
event = get next event();
user = lookup user(event);
if (user is new(user))

user.state = create state();
process event(event, user);

}
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Fig. 10. Core loop for a typical event process-based server.

This arrangement is efficient, since only one process is involved, and there is
little space overhead beyond the minimum memory required to hold each user’s
state. Furthermore, the process only accesses the state of one user at a time, so
if some mechanism made it impossible to access more than one user’s data at
a time, the server would hardly notice the difference. That mechanism would
have to isolate the state of different users and ensure that the process’s labels
would correspond to the accessible user state.

7.1 The Event Process Abstraction

The Asbestos event process abstraction bundles the process state that is spe-
cific to a particular flow of communication into an addressable entity. This
allows a process to isolate a user’s data and privilege by handling each user’s
requests in a different event process. Conceptually, an event process is a forked
copy of the process’s address space and any state specific to the address space,
such as labels. The event process mechanism automatically creates new event
processes for new communication flows and delivers messages for existing
flows to the appropriate event processes. Automatic forking is used because
explicitly creating event processes for new flows would be fraught with covert
channels.

Event processes are usually inactive and only run when they are explic-
itly handling a request. This usage pattern is evident in the event process
interface: event processes always start running by receiving a message via the
ep checkpoint system call; after processing the request, they call ep yield to
sleep until receiving the next request. The code for a typical event process-based
server resembles an event-driven dispatch loop; see Figure 10. Many event pro-
cess entities effectively share the event loop, each with its own isolated state.
The two ep system calls manage control flow transfer between events. The
“state” variable refers to a different user in each event process.

A process enters the event process realm the first time it calls
ep checkpoint, after which the process itself will never run again. Instead,
event processes derived from the base process can run. The process remains
idle until a message arrives on a port for which the base process, or any of its
event processes, holds receive rights. If the base process holds the port’s receive
rights, the kernel creates a new event process and delivers the message in the
new event process’s context. The new event process starts with tracking and
clearance labels and memory state copied from the base process and no ports of
its own. If, on the other hand, an existing event process holds receive rights for
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the destination port, the message is delivered in that event process’s context,
including its possibly modified labels and memory. In either case, any label
changes performed by the event process or due to message delivery only apply
to that event process’s labels, receive rights for created ports are granted to the
running event process, and changes to memory only apply to the event process
that made them. After it finishes processing a message, an event process calls
the ep yield system call. This call saves any changes to labels, memory, and so
forth, and then suspends the process, just as when the base process first called
ep checkpoint. No event process will run until another message is delivered,
at which point execution again resumes at the code directly after the call to
ep checkpoint.

We expect event processes to perform tasks that change relatively small
portions of the address space, and take advantage of this to save memory. All
event processes with the same base process share the same page table. When
an event process runs, we change the page table to reflect the changes the event
process has made to its address space. Furthermore, event processes often make
temporary modifications to memory (such as the stack) that are only useful
while handling the current event. To keep the kernel from unnecessarily saving
such memory modifications across ep yield, an event process can call ep clean
to undo all memory changes within the specified address range. Later, when
an event process is done, it can free all its resources with the ep exit system
call. The kernel state for each event process consists of tracking and clearance
labels (which may share subtrees with the base process’s labels), receive rights
for ports, a little kernel bookkeeping information, and pages of memory that
differ from the base process.

Usage. Messages addressed to a base process port typically correspond to
new client processes or new client network connections, exactly the situations
in which it is appropriate to create application state for a user. An event process
can discover its own creation by checking and setting a memory location that
the base process initialized to zero; a new event process inherits the zero, while
a re-activated event process will see its previous nonzero write to that location.
A new event process will typically allocate a new port on which to receive mes-
sages, as in line 4 of Figure 10. Messages to this port will always be delivered
to the current event process (as long as it does not transfer receive rights for
the port). Consequentially, event processes can send queries to the file server
or other processes on behalf of the current user and later receive replies on the
new port. When the event can be handled without waiting for any replies, an
event process can exit without creating a port, though that particular event
process will never run again.

The base process does not explicitly create event processes, nor does it know
of their existence. In fact, once it calls ep checkpoint, the base process never
directly executes again, nor is there a way to change its memory. Different event
processes are also unaware of each other’s existence except possibly through
message-based communication, which preserves the independence and isola-
tion represented by per-event process labels. It would be possible to design
mechanisms for event processes to selectively share memory subject to label
checks.
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The file server shows a use of event processes in practice. Recall that the file
server is only privileged for tags entrusted to it by applications. Furthermore,
it can only write data to disk when it is able to use that privilege to completely
declassify the data. However, the file server should still be able to read data on
behalf of processes with information flow that the file server can’t declassify.
Event processes let the file server serve these contaminated processes without
spreading contamination to other clients. Each client of the file server commu-
nicates with a unique event process. Since each event process acts like a fork of
the base process from the perspective of information flow, nonpickled tags are
not spread among the clients. Therefore, using event processes allows our file
server to effectively serve reads to contaminated clients.

7.2 Discussion

Typically, programs scatter users’ data across the stack in addition to various
places on the heap. This would lead to a relatively large number of pages that
are unnecessarily specific to each event process. Some of these pages merely
hold temporary variables, but others must persist across the processing of sev-
eral messages. Storing the nontemporary data in a contained data structure on
the heap can minimize the number of persistent pages required. This data man-
agement technique is much more natural in event-driven programming, which
the event process system calls symbiotically encourage. Thus, event processes
tend to use minimal private memory, and the optimization of only storing page
table differences is profitable in practice (1.4 pages per event process for our
test application).

Our current implementation of event processes uses a single thread of ex-
ecution per base process. This implementation detail violates the isolation of
individual event processes. For instance, an event process may block indefi-
nitely in recv, blocking all event processes that belong to the corresponding
base process. We believe that it would be possible to independently schedule
event processes without much performance impact, eliminating the associated
channels.

8. WEB SERVER DESIGN

The Asbestos Web server is based on the OKWS system for Unix [Krohn 2004].
In the original OKWS design, a demultiplexer, ok-demux, accepts each incom-
ing TCP connection and parses its HTTP headers to determine which service
the remote client is requesting. It then hands the connection off to a worker
process specialized to provide that service. Unix OKWS attempts to isolate ser-
vices so that one compromised service cannot affect others. The Asbestos Web
server also isolates services, but additionally isolates user state within work-
ers via event processes; a worker, even if compromised, cannot leak one user’s
information to other users.

8.1 Startup

The Asbestos Web server is started by a launcher process. The launcher
spawns ok-demux, site-specific workers requested by the site operator, and
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Fig. 11. OKWS message flow for handling user u’s Web request.

two other processes seen in Figure 1, idd and ok-dbproxy. The processes
exchange and inherit ports to establish the communication paths seen in
Figure 11.

The ok-demux process must be certain that it is communicating with the
worker processes that the launcher started and therefore can’t trust work-
ers to identify themselves correctly. Thus, the launcher grants privilege for
a process-specific verification tag to each process it starts. Ok-demux collects
these tag values from the launcher. When a worker identifies itself to ok-demux,
it must provide a V label containing its verification tag at level 0, allowing ok-
demux to verify that it speaks for the relevant process. Other designs, such
as having the launcher mediate initial communication with the workers or
providing a verified sender field in the IPC mechanism, could also solve this
problem.

In the current system, a process crash would necessitate a restart of the
whole process suite, though a more mature version of launcher could restart
dead processes (as in OKWS on Unix).

8.2 Basic Connection Handling

We now describe the data path of a simple Web request for the Asbestos Web
server; Figure 11 shows the steps. When a user u makes an HTTP connection:

(0) During initialization, ok-demux registered with the user-level network
server, netd, to listen for incoming TCP connections on the machine’s Web
port.

(1) Once netd accepts u’s connection, it allocates a new port connu to act as
a “socket.” Processes will send READ and WRITE messages to this port to
communicate over the network. The port label, PCconnu , is set to {connu 0, 2}
by the kernel. Section 8.7 describes netd further.

(2) Netd notifies ok-demux of the new connection and uses T− = {connu �, 3} to
grant it the capability to send to the socket.

(3) Ok-demux reads network data from u via port connu until it can authenti-
cate the user. Currently, the Web server uses a simple username and pass-
word pair. Ok-demux sends u’s username and password to the Web server’s
identity server, idd, which is described in Section 8.4.
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(4) If u provided a valid login, idd uses T− to grant ok-demux privilege for two
tags corresponding to u, a secrecy tag datau and an authority tag authu,
both at level �.

(5) Ok-demux grants datau � to netd, which then raises its clearance label to
contain datau 3 and raises PCconnu to {connu 0, datau 3, 2}. These changes
implement the secrecy idiom with a declassifier: data at datau 3 can escape
over the network, via connu. From now on, netd will respond to all messages
sent to connu using T+ = {datau 3, �}.

(6) When ok-demux read TCP payload bytes from netd in Step 3, it also
noted which service u requested. Assuming worker W provides the ser-
vice, ok-demux grants the connu and authu capabilities to W—allowing W
to send data to u’s connection and to act with u’s authority—and also raises
W ’s tracking label to datau 3 with T+ = C+ = {datau 3, �}, enforcing u’s
secrecy.

(7) Worker W returns from ep checkpoint into a new event process W [u],
receiving connu �, authu �, and datau 3.

(8) Event process W [u] makes a new port wpu and grants the capability to send
to that port to netd. It then reads u’s request by sending read requests to
netd’s port connu, yielding, and reading netd’s replies to wpu upon wakeup.
After reading and parsing u’s entire request, the event process formulates
a reply and writes it to connu.

(9) W [u] calls ep exit after completing the request.

We briefly argue that the worker W [u] can communicate with u as intended.
W [u]’s tracking label is contaminated with datau 3 in Step 6, but netd’s clear-
ance label was changed in Step 5 to accommodate that contamination. Conse-
quently, the kernel will allow W [u] to send data over connu to netd and across
the network to u.

The protocol is secure because any process or event process that accesses u’s
data either is trusted and has datau � in its tracking label, or is not trusted
and has datau 3. In this example, netd, idd and ok-demux have datau �, but
we assume them uncompromised (see Section 8.8 for further discussion). The
event process W [u] and its descendants have had the opportunity to see user
u’s private data, and therefore have datau 3 in their tracking labels. All other
processes, such as those working on behalf of a different user x, do not have the
necessary clearance to receive messages from W [u] or its descendants, prevent-
ing them from receiving u’s data. Even if such data theft were possible, netd
would not allow its traffic over the network: any process with datau 3, datax 3
in its tracking label cannot send data to netd because no netd port has the
clearance to receive that contamination.

While the kernel enforces security policies that isolate user data flows from
one another, the Web server’s concept of a user is opaque to the operating sys-
tem. Having declassification privilege for a Web server user’s tag, such as datau,
implies nothing about access to sensitive system resources, such as the kernel
disk image or the system password file. An Asbestos application like the Web
server has no need for “superuser” access.
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8.3 Web Sessions

Although HTTP is stateless, many Web servers store session data that per-
sists over multiple HTTP connections. The Asbestos Web server can securely
store per-user server-side state with simple additions to the above protocol.
When supporting sessions, the ok-demux process stores a table of all recently
active user-worker pairs. In Step 6, if user u requests service from worker W ,
ok-demux looks in this table for a port to the event process W [u]. If it finds such
a port, it forwards connu directly to W [u]. If it does not, it forwards u’s connec-
tion as normal, causing a new event process to be created. When the new event
process allocates port wpu in Step 7, it notifies ok-demux, which then inserts
the value into its session table for future use.

The worker event process writes session data to memory as normal. To pre-
serve this state across connections, it must call ep yield instead of ep exit
in Step 9. Because ok-demux sends u’s requests for W directly to W [u], those
requests will see any previous changes to session state. At the end of the event
loop, event processes typically call ep clean before yielding to discard all pages
modified since the checkpoint that do not hold session data; this will typically
include the stack. When a user u’s session times out or u explicitly logs off, u’s
worker event processes call ep exit and ok-demux cleans u’s entries out of its
session table.

8.4 Managing Identities

In Steps 3 and 4, ok-demux verifies user u’s login credentials by querying an
identity server idd. This server associates persistent user identification data,
such as username, user ID, and user password, with the more temporary au-
thority and secrecy tags datau and authu. When idd answers a successful login
query in Step 4, it either generates new datau and authu tags (if u has not logged
in recently) or returns cached datau and authu tags. In the current implemen-
tation, idd stores user information in a relational database (see Section 8.5)
and never cleans its cache. The identity server has special capability-based ac-
cess through ok-dbproxy to this password database, which other processes such
as workers cannot access directly. Thus, the lookup in Step 3 will result in a
database query per first-time login.

8.5 Database Interaction

Asbestos offers preliminary database support to worker processes through a
port of the Unix package SQLite [SQLite]. A process called ok-dbproxy inter-
poses on all Web server database accesses, converting Asbestos labels and se-
curity policies to data types and functions native to standard SQLite. With
database access, the Web server can easily extend its label-based security pol-
icy to one that persists across system reboots. In our current implementation,
ok-dbproxy is both privileged and trusted: it is trusted to check and set labels
to ensure integrity and secrecy respectively, and is privileged in that idd grants
it all Web server users’ secrecy tags at level �.

Out database implementation is intended mostly to make the benchmark
and demonstration application more realistic, and does not currently support
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the full generality of labels. Instead it supports tainting rows as belonging to
a specific user, at either level 3 or 1. Ok-dbproxy accomplishes this by adding a
“user ID” column to the table definition of every table accessed by Web server
workers. The workers themselves cannot access or change this column. When
ok-dbproxy receives INSERTs, UPDATEs, or other SQL queries that write to
the database, it first checks that the request came with a valid username u and
a V label bounded by {datau 3, authu 0, 2}. The V label conveys two important
facts. First, the sender’s tracking label does not contain tags other than datau

at level 3, and therefore the sender has only been contaminated by her own
data. Second, because the V label contains authu at level 0, the sender was
granted the authority to write data for u. After checking the given V label,
ok-dbproxy queries idd to affirm the binding between user u and the two tags
datau and authu. If all checks pass, ok-dbproxy rewrites u’s request so that every
row written will have u’s user ID in the private “user ID” column.

Whenever a worker process fetches data from the database via SELECT, the
ok-dbproxy process reapplies the appropriate contamination to returned rows.
If a row’s user ID column contains u’s ID, then ok-dbproxy returns the row’s
data using T+ = {datau 3, �}; it queries idd for datau if it does not have this
mapping cached. Each row is returned as a separate message with appropriate
T+ labels, and to finish the request, ok-dbproxy sends a message without a T+

label indicating that all data has been returned. Since each worker’s clearance
label is limited to receiving at most one user’s secrets, a worker will receive
only rows meant for its user, and cannot tell how many other rows were sent.

Our current prototype retrofits a standard database with a subset of As-
bestos’s security features. Database systems built specifically for Asbestos or
other distributed information flow control systems would incorporate labels and
event processes in a deeper way.

8.6 Decentralized Declassification

When a process, such as user x ’s worker event process, asks to read user u’s data
from the database, the database will contaminate the response with datau 3.
User x ’s event process will fail to receive this message since its clearance label
is not high enough. Even if it were to receive the message, its tracking label
would be too high to send data back to x over the connection connx . But user u
may want to share some data with x, such as her public profile. That is, user u
sometimes needs to declassify private data for public access.

The Asbestos Web server supports semi-trusted decentralized declassifiers
for this purpose. To trust a worker as a declassifier, the launcher tells ok-demux
that a particular worker is a declassifier. Then, when ok-demux hands a con-
nection off to the declassifier worker D in Step 6, it grants D the tag datau �

instead of contaminating it with datau 3. Privilege for datau gives the worker
the privilege to declassify u’s secret data. Thus, when D contacts the database
to SELECT u’s secret data, ok-dbproxy’s response does not affect D’s tracking
label. The declassifier can now write declassified data to the database, pro-
viding a V label of {1} to prove it has this right. Internally, ok-dbproxy flags
a data row as declassified by setting the row’s user ID column to zero. When
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ok-dbproxy reads data with zeroed user IDs back out of the database, it does not
add an T+ label, and user x ’s worker process can safely read u’s declassified data
out of the database without affecting its tracking label. This declassification is
decentralized since it does not directly involve idd, the creator of tag datau.
Furthermore, the D[u] event process is trusted only by u and cannot declassify
any other user’s data. An attack on a declassifier worker can expose more of u’s
data than intended, but cannot otherwise affect the system’s information flow.

8.7 Network Server

All access to the network in Asbestos happens through one process, netd, which
implements the TCP/IP stack (using a port of LWIP [Dunkels 2003]), manages
network devices (using a version of Intel’s Linux driver for the E1000 giga-
bit Ethernet card), and creates connections for other processes. As the single
interface to the network, netd has a privileged role and must properly apply
restrictions to connections it manages. An application can send a message to
netd to request a outgoing connection to a remote host or to listen for incoming
connections. In either case, netd wraps a new connection with an Asbestos port
for which it grants privilege to the requesting application in the manner of the
capability idiom. Once a process has a port corresponding to an open connec-
tion, it may perform READ and WRITE operations to transfer data, CONTROL
operations to close the connection or change the socket’s low-water mark, and
SELECT operations to determine available buffer space. On a listening socket,
a process may perform READ operations to accept incoming connections and
CONTROL operations to close the socket. In order to apply labeling to network
connections, netd optionally maintains a secrecy tag for each connection. When
a process tells netd to add a secrecy tag to a connection, later messages sent in
response to operations on that connection will be contaminated with the secrecy
tag at level 3 (a more general implementation would apply a general T+ label
with tags at any level). In the Web server, for example, netd contaminates all
data read from user u’s connection with datau 3 at ok-demux’s behest.

8.8 Trust and Privilege in the Asbestos Web Server

Currently, all Asbestos Web server components are trusted and/or privileged
except for worker processes. We claim that for typical Web sites, worker pro-
cesses correspond to the most vulnerable and error-prone parts of the computing
base. They are vulnerable because they read, write, store, and manipulate sen-
sitive data both from the network and from the database. They are error-prone
for several software engineering reasons. First, worker code typically does not
face external code audit, both because it varies greatly from site to site and
because many sites’ intellectual property controls discourage open review. Sec-
ond, load on Web sites can fluctuate wildly: with unexpected load spikes come
emergency performance fixes that can accidentally circumvent security mech-
anisms. Third, large Web sites can run hundreds of thousands of lines of Web
code, and since writing Web service code that functions correctly (produces the
correct result for honest users) seems simple, it is often assigned to junior pro-
grammers without stringent oversight. Experience has shown, however, that
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writing secure Web services is challenging indeed. We believe securing Web ap-
plications with automatic, kernel-enforced mechanisms to be a significant step
for Web security.

To show that Asbestos can secure worker processes, we built two workers
with intentional security flaws. One allows the user to inject arbitrary SQL
to run against a database and the other allows the user to start an arbitrary
process. Using these workers we logged in as a particular user and then tried
to access data belonging to another user, data that should be inaccessible. In
all cases, the inappropriate data flow was prevented. By adding messages to
the kernel we were able to confirm that the label components that should have
prevented the inappropriate data flow were in fact preventing that flow.

More Web server components could be moved out of the trusted or privi-
leged computing base. For instance, netd could be decomposed into a simple
trusted and privileged component and an event process-based workhorse. The
trusted front end would classify incoming packets and firewall outgoing pack-
ets based on discretionary label rules; it would therefore be privileged with
respect to all Web server user tags datau, as netd is now. It would forward pack-
ets, once classified, to the appropriate event processes of an untrusted netd
back end, which would manage the specifics of TCP buffering and flow control.
Each back-end event process would be contaminated with respect to the user
on whose behalf it speaks, much like worker processes in the current system.
Similarly, the database might be decomposed into a trusted, privileged indexer
and an event process-based back end that would manage caching and stable
storage.

9. COVERT CHANNELS

Asbestos labels prevent processes from explicitly transmitting sensitive infor-
mation to unauthorized parties. However, supposedly isolated processes can
still communicate information through covert channels. Our goal is not to
eliminate covert channels—an impossible task—but rather to make it signif-
icantly harder to leak information than on systems used as Internet servers
today. While high-grade military systems are required to quantify the rates of
all covert channels, for Asbestos we content ourselves with enumerating the
channels.

Broadly speaking, covert channels can be categorized as either timing or
storage channels. A process A conveys information to B with a timing channel
if it modulates its use of system resources in a way that observably affects B’s
response time. For instance, A might flush the processor cache or cause the
disk arm to be moved farther from a subsequent request. We are less concerned
with timing channels than with storage channels, as to some extent timing
channels can be mitigated by limiting processes’ ability to measure time pre-
cisely [Hu 1991]. Asbestos offers no such feature, however, and the problem
becomes harder in the presence of network communication.

Storage channels are caused by any state that can be modified by process A
and observed by B when A is not supposed to transmit information to B. As it
is difficult if not impossible to eliminate all storage channels, it was a goal to
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avoid storage channels that could be exploited within a single process, so that
at least two cooperating processes are required to communicate information in
violation of a label policy.

The Asbestos design contains two inherent storage channels, the program
counter and process labels. The ep yield system call potentially affects the
program counter of a differently tagged event process by causing it to run. Two
colluding, identically labeled event processes can transmit a bit of information
by the order in which they call ep yield if the next scheduled event processes
have lesser taint. This channel is roughly equivalent to the covert channel
intentionally included by the drop-on-exec feature of IX [McIlroy and Reeds
1992].

The send system call potentially raises the value of the recipient’s tracking
label to an unanticipated value. This is also a storage channel, as labels can be
observed through lack of communication. Consider a contaminated process A
attempting to communicate a bit of sensitive information to an uncontaminated
process C. An attacker might construct two uncontaminated processes (either
before A becomes contaminated or by controlling some other uncontaminated
process). These processes, B0 and B1, both repeatedly send heartbeat messages
to C. By sending a message that contaminates process Bi, A can communicate
the value i to C. Such storage channels are inherent to any system in which
a contaminated process can change the labels of a less contaminated process.
HiStar [Zeldovich et al. 2006], a successor system to Asbestos, avoids these
channels by requiring that processes explicitly choose to contaminate them-
selves: a HiStar thread actively changes its label before reading contaminated
data. A similar technique could eliminate the analogous channel in Asbestos’s
message passing architecture.

Other Asbestos kernel data structures have been carefully designed to avoid
exploitable storage channels. Tags are generated by incrementing a 61-bit
counter, which would be a storage channel. However, since the kernel encrypts
the counter value to produce tags, the user-visible sequence of tags does not
convey exploitable information.

The current implementation still has several other storage channels that
could be closed or limited. In particular, Asbestos does not yet deal gracefully
with resource exhaustion.

10. EVALUATION

Asbestos’s information flow and isolation features add moderate overhead to As-
bestos applications. The additional memory per user required to support user
isolation on our Asbestos Web server is small. The server’s throughput and
latency are competitive with those of the well-known and well-tuned Apache
server running on Linux. For each metric, the Asbestos Web server’s perfor-
mance lies between the performance of an Apache server with CGI-based work-
ers and an Apache server with worker code linked in as an integrated module.

Performance measurements were conducted on a gigabit Ethernet-based lo-
cal network with a Linux HTTP client generating requests. The Asbestos server
is a 2.8 GHz Pentium 4 with 1 GB of RAM. Our experiments made as few file
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Fig. 12. Memory used by active and cached Web sessions as a function of the number of sessions.
Includes all memory allocated by both kernel and user programs.

system accesses as possible; we disabled all Web access logging and ran all
databases in memory.

10.1 Memory Use

In Section 7, we argued the merits of event processes over more traditional
fork-accept designs. Our hypothesis was that each additional protection domain
might consume only one additional page of memory. Our measurements roughly
support this claim.

Web sites often cache dynamic data to lighten database load and to avoid
latency. As discussed in Section 8.3, the Asbestos Web server uses event pro-
cesses to cache dynamic data while maintaining isolation among users. Our test
program uses event processes that persist for the lifetime of a Web session, and
thus span multiple HTTP connections At the end of an HTTP connection, the
worker uses ep clean to release all allocated memory except for session data.
A cleaned event process holding only session data is called a cached session. An
event process that is processing an HTTP request uses more memory than a
cached session, since it stores temporary variables and buffers; such an event
process is called an active session. A typical Web server has many more cached
sessions than active ones.

Our experiments measured the amount of allocated memory after creating
different numbers of Web sessions, including space for kernel data structures.
In all of our memory measurements, we ran the server with one toy Web service
that stores data from a user’s HTTP request and returns it to the user in the
subsequent request. The size of the response is about 1 KB.

The system uses approximately 1.4 four-kilobyte pages per cached session;
Figure 12 graphs the results. One complete page is due to state maintained
in the worker’s event process. The remainder of the memory is for kernel data
structures—event processes, labels, and tags—as well as memory in other user
processes, such as idd.

To determine the memory cost of active sessions, we repeated the previ-
ous experiment but modified the worker so that it never unmaps memory via
ep clean or ep exit. This method produces worst-case behavior, capturing the
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maximum amount of memory consumed by our simple worker. The experiment
shows that an additional seven pages of memory are used by each active ses-
sion. Two of those pages are stack and exception stack pages, one is for the
event process’s message queue, and the remaining four comprise the modified
heap and pages with modified global variables.

10.2 Web Server Performance

Our throughput and latency experiments tested an even simpler Web applica-
tion: a chargen service that responds with a string of characters whose length
depends on the client’s parameters. We compared the Asbestos Web server to
the Apache Web server, version 1.3.33 [Apache] (which outperformed version
2.0.54 in our tests). We implemented our test application both as a standard
CGI process written in C and as an Apache module written in C [Apache API].
In both cases, Apache keeps a pool of pre-forked processes to answer requests.
Apache with CGI processes additionally forks and executes the CGI binary for
each request. Apache with the module version of the service, which we call “Mod-
Apache,” does not fork for each request. Mod-Apache is efficient but provides
no isolation. Apache with CGI processes does provide some isolation, but at a
significant cost when compared to Mod-Apache, since each request is handled
in a forked process. However, at least in its default configuration, Apache does
not run CGI processes in a chroot jail, so a malicious user that takes over an
exploitable CGI process can easily attack any other local vulnerabilities acces-
sible to the corresponding Unix user. In contrast, the Asbestos server provides
isolation both between services and between users within a service.

Throughput. To test throughput for the Asbestos server relative to Apache
and Mod-Apache, we first varied concurrency to maximize completed connec-
tions per second. For Apache, 400 concurrent connections maximized through-
put; for Mod-Apache 16 concurrent connections was the sweet spot. Asbestos’s
network stack is based on LWIP [Dunkels 2003], which was chiefly designed to
conserve resources and is not tuned for performance under load. Sixteen con-
current connections gave maximum throughput. For the Asbestos server, we
then varied the number of cached sessions in the system. In all tests, the server
responded with 144 bytes of HTTP data, 133 bytes of which were in headers.
Larger responses only exercise the network stack.

The Asbestos server’s isolated users were authenticated and workers were
run in different event processes as usual. We measured performance with the
session support described in Section 8.3: once authenticated to the system,
future requests were serviced by the event process created in the authentication
step. The Asbestos throughput results thus contain data both for forwarding
messages to existing event processes and for creating new event processes,
which is slower. (Creating a new event process involves communication with the
database and some kernel overhead.) In our benchmark, for 1000 user sessions
and more, each user connected to its session exactly four times; a workload with
a different ratio of new sessions to existing sessions would perform differently.
Because the number of sessions affects the size of labels on some components,
we expect performance to change with the number of cached sessions. Neither

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 11, Publication date: December 2007.



Labels and Event Processes in the Asbestos Operating System • 11:39

Fig. 13. Throughput for various numbers of cached sessions in the Asbestos Web server, compared
with Apache and Mod-Apache.

Fig. 14. The median and 90th percentile latencies of requests to various server configurations.

Apache nor Mod-Apache isolates users, so no attempt to authenticate users is
made for those tests.

Figure 13 shows that, with sixteen sessions, the Asbestos server performs
about 250% better than Apache, or about eighty percent as well as Mod-Apache.
However, for most of the tests, the Asbestos server performs around twice as
well as Apache and half as well as Mod-Apache. Section 10.3 further discusses
the factors that reduce the Asbestos server’s performance as the number of
sessions increase.

Latency. This section compares the per-request latency of the Asbestos Web
server with Apache and Mod-Apache. We measured the latency of all three
servers with a concurrency of only four simultaneous connections; larger con-
currency values pressure Asbestos’s LWIP stack. Mod-Apache, which processes
each request within a single process, responds to most requests with very low
latency. This is to be expected of a server that can handle Web requests with
simple library calls. Unlike Mod-Apache, Apache with CGI pays performance
penalties for forking and IPC, responding to most requests with three to five
times the latency. As shown in Figure 14, the Asbestos server with sixteen users
has a smaller median latency than Apache, as well as a smaller 90th percentile.
Scheduling affects Asbestos to a lesser extent because there is no parallelism
for requests to choose from. All requests must sequentially traverse netd, ok-
demux, worker, and then netd again, which does not give the option for any
request to be temporarily starved. Asbestos with 145,000 cached sessions has
latencies which are a bit more than sixteen users.
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Fig. 15. The average cost of various Asbestos components in kcycles/connection as the number of
cached sessions increases.

10.3 Label Costs

Ideally, varying the number of sessions should have no effect on throughput
or latency. However, the size of various labels in the system will increase with
the number of sessions. Figure 15 shows the costs of various components in the
system in thousands of CPU cycles per connection as the number of cached ses-
sions increases. The “Network” and “Web server” lines represent the time spent
in netd and the server code itself, respectively. The “Kernel IPC” line includes
time spent in processing the send and recv system calls, minus time spent
dealing with label operations. All time spent doing label operations anywhere
in the system is accounted for in the “Label operations” line. Finally, all other
time, including time spent in the database and time dealing with page faults,
is included in the “Other” line.

Most of the components use the same amount of time regardless of the num-
ber of sessions. Networking consumes the largest fraction of time. Label op-
erations, on the other hand, use more time per connection as the number of
sessions increases. Since the Asbestos Web server uses two tags to isolate
a user, 145,000 cached sessions implies idd and ok-dbproxy’s tracking labels
will contain more than 290,000 tags, the vast majority at level �; netd’s clear-
ance label will have accumulated 145,000 tags in order to accept secrecy tags;
and ok-demux will hold at least 145,000 tags for open worker sessions. Fur-
thermore, some of these large labels must be updated to include a capability
for each new TCP connection, and then to release that capability when the
connection is passed to an event process or closed. The AVL tree structure
currently used for labels supports these frequent label operations with only
logarithmic overhead. As a result, Asbestos labels and event processes can
practically isolate user state even on a server storing data for thousands of
users.
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11. CONCLUSION

The Asbestos operating system makes nondiscretionary access control mech-
anisms available to unprivileged users, giving them fine-grained, end-to-end
control over the dissemination of information. Asbestos provides protection
through a new labeling scheme that, unlike schemes in previous operating
systems, allows data to be declassified by individual users within categories
they control. The categories, called tags, use the same namespace as communi-
cation endpoints, making them a kind of generalization of capabilities. As in a
capability system, processes can dynamically generate new tags and distribute
them independently. Processes can specify temporary label restrictions on sent
messages to avoid the unintentional use of privilege.

Asbestos’s new process abstraction, the event process, efficiently supports
server processes that must spin off many versions inhabiting distinct security
compartments. Event processes impose less overhead on the operating system
than forked address spaces, so many thousands of them can coexist without
resource strain. A prototype Web server manipulates labeled data so that even
software bugs in the high-risk worker code cannot cause one user to receive
another’s private data. The system requires only 1.4 pages of memory per cached
Web session and exhibits performance comparable to Unix systems that provide
weaker isolation.
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